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Abstract tions. This drawback narrows the scope of the model’s
engineering applications, due to numerical overflow.

This paper summarizes the halftoning techniques thatem- A common approach aimed at preventing numerical
ploy the M-lattice, a non-linear dynamical system recentlyoverflow from plaguing the simulations of reaction-dif-
introduced to the signal processing community. Wie fusion systems on the digital computer has been to clip
lattice system was derived from the reaction-diffusionthe magnitudes of the state variables by adding an “if”
model, first proposed by Turing in 1952 in order to ex-statement to the numerical methedg, Forward Euler)
plain mammal coat patterns. Thé-lattice system is used for solving the system of differential equatfons
closely related to the analog Hopfield network and theHowever, this technique does not guarantee that the sys-
cellular neural network, but has more flexibility in how tem will reach equilibrium; moreover, it destroys the
its variables interact. In particular, this model is well-suitedmathematical integrity of the original dynamical system.
for a variety of applications formulated as constrained non- By using a warping function to facilitate stability,
linear optimization. The present overview demonstrateshe M-lattice system allows more flexible non-linear in-
the use of this model for three different image halftoningeractions than the reaction-diffusion system. Three of
examples. The first example synthesizes halftones free tifie capabilities of this model are illustrated in an appli-
correlated artifacts; it illustrates the noise-shaping capazation to digital halftoning of images.
bility of the M-lattice system. The second example syn-  Faithful halftoning is the task of tricking the human
thesizes halftones in the creatively “hand-drawn” style ovisual system into seeing exactly the original multi-tone
the Wall Street Journal portraits; it illustrates how a morepicture in a replica image consisting of only the two ex-
flexible quality metric can be used when the binary retreme intensities. While the faithful halftoning of color
guirement is stated as an explicit constraint. The thirdmages is a mature discipline it is still a challenging prob-
example extends this monochrome “special-effectslem. The reason is that including the color information
halftoning method to allow color images; all three (red,makes the concerns encountered in gray-scale halftoning
green, and blue) halftone components are synthesized sl the more complicatédFor example, the non-linear

multaneously by th#&-lattice. effects due to binarization exacerbate the moire patterns,
) while the printer imperfections create more visually ap-
Introduction parent artifacts. The state of the art techniques for faith-

ful halftoning (and, more generally, quantization) of color
The present research has originated in the investigatiamages can be found®hand references therein. These
of the usefulness of reaction-diffusion systems for modpapers cover a number of central issues in color printing.
eling natural textures. A reaction-diffusion system is aThe concept of utilizing the properties of human visual
set of heat equations coupled by, typically non-linearsystem for the quantization of color images is analyzed in
reaction terms. The reaction-diffusion model was firsf6]. Visual models are employed to develop an efficient
proposed by Turing in 1952 in order to explain mammabuantization algorithm in luminescence-chrominance
coat patterns, such as zebra stripes and leopard spotelor space, which produces perceptually high-quality
Until recently, reaction-diffusion systems have been requantized images. The issues of printer distortions and
searched predominantly by mathematical biologistdow to compensate for them are elaborated in [7].
working on theories of natural pattern formation and by  On the other hand, special-effects halftoning is a
chemists working on modeling the dynamics of complexelatively new directio#®. As the name implies, the goal
chemical reactiorisHowever, the past three years haveis the automatic synthesis of caricatures that accentuate
seen a significant surge in interest in reaction-diffusiorcertain desirable features of the given image. For ex-
systems, primarily for exploiting them in the areas ofample, many newspaper portrait styles emphasize lines
computer graphics and image proces3frig and curves in the original image.

In order to form patterns a valid reaction-diffusion One distinctive attribute of the special-effects half-
system must exhibit local instability to small random per-tones is the fact that the error, instead of being uniformly
turbations. That notwithstanding, the system should bediffused, is directed into places that exaggerate desirable
stable in the large-signal sense for practical reasons. Aspects of the image. Hence, the usually undesirable er-
major difficulty associated with the reaction-diffusion ror is reshaped into a perceptually-pleasant feature.
paradigm in its standard form is that the system is stable The color image halftoning technique discussed in
only for a restricted class of non-linear reaction func-this paper is based on the method of non-linear program-
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ming with an orientation-sensitive quality meti¢ The  gives the angle¢, O[-m, ri],and relative strength (or mag-
computational substrate for solving the non-linear pronitude),m O [0,1], of the dominant orientation present
gram is theM-latticé't. This system is rooted in the reac- at that pixel.

tion-diffusion model, first proposed by Turing in 1952 to In the Wall Street Journal type halftoning, we use
explain the formation of animal patterns such as zebrthe orientation to guide the action of thklattice sys-
stripes and leopard spots. The M-lattice is bounded angm. For example, to design a low-pass adaptive filter
has a lot of flexibility in how its variables can interact. Inthat rotates to the dominant orientation, denote the di-
particular, it is well-suited to a variety of applications for- agonal matrix of variances by ¥nd the rotation matrix

mulated as constrained non-linear optimization. by ©;:
The present color halftoning algorithm the exten- 0, 0 |j Ecos@i -sing, [
sion of the gray-scale special-effects halftoning tech- V; = D‘7| x 0?2 y _ 0 (2)
nique reported earligto produce a new algorithm, which H @'“ei cost; H
performs the automatic synthesis of color caricatures in
the style of the Wall Street Journal portraits. The relative sizes offiz,xand Uiz,ydepend om and
determine the skewness of filters with respect to the
Background: M-Lattice System dominant orientation:
We briefly review the essentials of thklattice systerh > 2 2
Let ¥;(t)O0be a state variable as a function of time at iy 'E(l_r“)’ai'x =L-aiy, 3

each lattice point, wherei = 1, . . .N. Let xi(t) be an

output variable, obtained fror#i (t)via Xi () =9(¢i(t)).  whereL x L is the size of the filter mask in pixels. Let
The “warping” functiong(u), is a saturating piece-wise f0z?be the pixel position. Then the (unnormalized) ori-
linear non-linearity with an arbitrarily large number of ented low-pass filter is given by:

segments. The values af(t) will correspond to the in-

tensities of the pixels in the output image at the time h®(fi) = exp{-1i" O] V,0,f}. (4)
when the system has converged. Constti¢iand X(t)

by concatenating®:1(t), . . ., ¥n(®and xu(1),

Xn (1), respectively into column vectors. Halftoning

Definition Suppose that a given functiogy(t)),is
continuous, twice-differentiable, and bounde(s above LeSupposer 0z?; s(A) (1-11] is the continuous-tone (or
the matrixA be real, symmetric, and negative-definde  finely quant|zed) original input image signaf(n) O{-1,
oo™N A =[a;],A= AT and Di A [A] <0. Then the M-lat- 1} is the output halftone image; artdf) is a 2-D filter.
tice systerhis the following non-linear dynamical system The halftoning method must yield an image which appears
perceptually similar to the original gray-scale image. Least-
squares halftoning approaches receive continual attention,
because they can employ explicit models of the human vi-
sual system and of the printing device

Notice the right-hand side contains two compo-
nents—a linear function of the state variables and théloise-Shaping Least-Squares Halftoning
gradient of a typically non-linear function of the warped It is generally agreed that error diffusion produces
state variables. The convergence and stability propertigfe best results in terms of artifaétdHowever, the cau-
of the M-lattice system are analyzed in [11]. For thesality of the algorithm prevents it from making sharp
present (halftoning) applications, (1) has exhibited contransitions and tracking edges propé&tlin contrast, the
vergence (in computer simulation) to fixed points of theleast-squares halftoning techniques render edges well,
form x X-11"regardless of the initial conditions. but suffer from granular artifacts. We show that ke

In non-linear optimization,®(x)is the objective lattice system naturally combines noise shaping with
function to be maximized. For certain types of objectiveleast-squares optimization, thereby offering the benefits
functions, theM-lattice system converges to the (appro-of both.
priately defined) local maxima o®(x)with respect to Given a least-squares halftoning technique, set
X .1 Thus, in many situations it is advantageous to usep(x)to the negative of the distortion measure. For ex-
the M-lattice system for non-linear optimization. In the ample, if
examples described iHalftoning, the directionality

% = A1) + D DR (). 1)

.
information defines the quality metric for the non-linear ®(X)=(H'S) X__ XYHTHY, ®)
program, solved by the 3-lattice system. then at an equilibrium (1) yields:

Background: Estimating Local Orientation “AG=HTS—HTH}, or (6)
We employ the computation saving “steerable” set of ~(A-HTH) P =HTS-HTH(X- §). )

basis filters described in [12]. Steerable filters have been

shown to give a good match to orientation perception by  Now set -A-H™H)=I, and letd=Xx - ¥ be the guan-
humang®. The output of the steerable filters at each pixetization error (or the quantization noi&e)rhen (6) and
i of the gray-scale version of the original color image(7) become:
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@=HTs-HTHg (8)

Thus, according to (8), tHd-lattice system performs
non-causal error diffusion in the steady-state limit. For per-
ceptual reasons, it is desirable to minimize the low-fre-
guency content of the quantization error. SihCél is a
smoothing filterH, “1-H™H becomes a high-pass filter.
Then it follows that A =H,. The action of the high-pass
noise shaping filter,, gives the quantization noise the
perceptually pleasant “blue” charaééeYVe exploit the fact
thatA can have off-diagonal elements by making it act as a
perceptually-based filter. Therefore, the resulting images
correspond to local minima that are visually more pleasant
than those produced using a diagohahatrix.

Starting with the equation for error diffusion, (8), and ¥
reversing the above steps leads to (6), the equation for the §
M-lattice system in steady state. Error diffusion has been
modeled as a Hopfield network that ugés;) in place of
g(y,).* However, the non-monotonicity @f(y,) causes
instability. In contrast, slightly perturbirgy so as to make (a)
it negative-definite guarantees that (1) will be stable for
binary outputs. Hence, tiM-lattice system is a more suit-
able model for non-causal error diffusion.

For the sake of simplicity we programmed tide
lattice system with the symmetric version of the origi-
nal Floyd & Steinberg error filter. Figure 1 shows the
magnified version of a test image and the result of
halftoning it by theM-lattice system. The new method
provides accurate detail rendition without introducing
correlated texture. However, some perceptual artifacts
still occur, because the filter coefficients have not yet
been optimized after the causality constraint was lifted.
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Halftoning As Non-Linear Program

Supposen 0z?; s(f)O[-11] is the finely quantized
original input image signaly(n) 2{-11} is the output
halftone image; ant( ) is a 2-D filter (not necessarily
the same al( ) in the previous section). L& =HTH,
whereH is a circulant matrix withn( 5) in the first row.
The problem of halftoning can be stated as a non-linear
program: The problem of halftoning can be stated as
non-linear program:

(b)

Eigure 1. Noise-Shaping Least-Squares Halftoning. (a) a por-
tion of the original “Lena” image (magnification is2 on a
side); (b) the image in (a) halftoned by the M-lattice system.

min1y7By - (BS)Ty
g 2
subject to constraints:

yf =120, (10) The Lagrange multipliersy,, are the varying pen-
}t_y terms that enforce the constraints according to (12).
s a result, the unconstrained minimization o§£¢n
(11) produces the optimal halftone image.
The optimization problem, (11), is “programmed”
onto theM-lattice system, (1), by setting equal to
X, ®(x)to -£(y) and taking partial derivatives. This yields:

where the vectors are the standard concatenations of the ¢
responding sequencé&s=HTH, andH is a circulant matrix
with h( ) in the first row. The particular form of constraints,
(10), forces each pixel to assume binary values.

In order to solve this problem using thelattice
system we combine the objective function to be mini-

mized, (9), with theN constraints, (10), into the di(t) - o - 13
Lagrangian cost functional with the help of the Karush- —g AW +BS=Bx(1)-Px(1), (13)
Kuhn-Tucker condition's:
whereP = Diag {p,, . . .,p\}- The elements o& () are
min£(y), where chosen so as to guide the system towards an optimum
£ly)==y"By-(BS) Ty + S (-1, corresponding to a perceptually-pleasant halftone. It has
2 i (11)  peen shown that = B-l is a good 3-fice, because it
pi <0,p (y>-1)=0. (12) filters out objectionable correlated spatial pattérns
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Halftoning with the Hopfield network requires set-
ting b, = 0; otherwise, the optimal valuesyiwill not be
binary®1”. However, treating halftoning as a non-linear
programming problem and solving it with tivlattice
system Gffers considerable flexibility in the choice of the
quality metric and in the functional form of constraints.

In order to demonstrate this flexibility, we
encorporated orientation detection into the halftoning
qguality metric. The adaptive filter matriX), was de-
signed so as to include the information about the domi-
nant orientation at each pixel of the original image,
shown in Figure 2(&j.

Since no effort is made to desigthin a way that
would result inb; = 0, the non-linear constraints pro-
vide the only mechanism for driving the output pixels to
the limits of the gray scale. Figure 2 displays the result,
which exhibits more of the line and curve features found
in hand-drawn “halftones” (such as the Wall Street Jour-
nal portraits).

Orientation-Dependent Color Halftoning as Non-Lin-
ear Program

We now consider the problem of synthesizing—for
each RGB component—a binary caricature that brings
out the directional content of the original color image.
The resulting halftoning method must yield a composite
halftone RGB image that appears similar to the original
color image in the sense of preserving orientations. A
least-squares halftoning approach is appropriate for this
task, because it can employ an explicit model of percep-
tion and printer distortions as the measure of perfor-
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mancé*’. Here we show how to implement such an
approach using th®l-lattice system and point out the i
additional benefits brought by using thklattice. '

In order to solve this color halftoning problem us-
ing theM-lattice system, we combine the objective func-

il L ——m

i e -h
tion to be minimized, (9), with thN constraints, (10), i ,,:\',l"ﬁ MU
into the Lagrangian cost functional with the help of the & : 1@]‘@[ 4
Karush-Kuhn-Tucker conditiofdssimultaneously for all == wm?iﬁr-'?"‘f' :," {4,

three color components. The Lagrange multipligrs, ()
are the varying penalty terms that enforce the constraints
according to (12). As a result, the unconstrained miniFigure 2. Orientation-sensitive halftoning. (a) the original
mization of £(;) in (11) produces the optimal color half- “Einstein” image; (b) the "Einstein” image adaptively
tone image. halftoned using orientation information at each pixel of the
While the gray-scale special-effects halftoning al-original.
gorithm is implemented as a 1-latticéhe RGB color
scheme used in the present study is organized as a 8ample of this technique appears in Figure 4.
lattice. This organization can be advantageous in case According to the poster provided by the Wall Street
the quality metric requires the interaction of the colorJournal Classroom Edition program, the entire process of
components creating a monochrome halftone is done by hand and takes
Treating halftoning as a non-linear programming prob-an artist from three to five hodtsIn contrast, the simu-
lem and solving it with th#-lattice system offers consid- lation of theM-lattice system implementation of the color
erable flexibility in the choice of the quality metric and in halftoning algorithm on the CM-2 takes 6000 iterations
the functional form of constraints. In order to demonstrateat the time step of 0.01 sec for the total time of approxi-
this flexibility, we incorporated orientation detection into mately 20 minutes including the system time and the 1/O.
the halftoning quality metric. The adaptive filter matrix,
H, was designed using (4) so as to include the information
about the dominant orientation at each pixel of the gray-
scale version of the original color image, shown in FigureWe have reviewed thi-lattice system and applied it to
3(a). Figure 3(b) displays the result, which exhibits moredigital halftoning of images. As a non-linear program-
of the line and curve features found in hand-drawn “half-ming technique, th#-lattice system is capable of solv-
tones” (such as the Wall Street Journal portréit&hother  ing constrained optimization problems with flexible

Summary
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(b)

Figure 3. Orientation-sensitive color halftoning. (a) the origi-
nal “Marty” image; (b) the “Marty” image adaptively
halftoned using orientation information at each pixel of the
original.

objective functions. Orientation-sensitive halftoning

makes use of this property. When the objective function

is a quadratic form, thigl-lattice system can be designed (b)

to perform blue noise filtering. This implies that the re-

sulting halftone images can be made not only optimal ifrigure 4. Orientation-sensitive color halftoning. (a) the origi-

the least-squares sense, but also perceptually pleasarital “Betty” image; (b) the “Betty” image adaptively halftoned

We have also presented a method for halftoning colo#sing orientation information at each pixel of the original.

images automatically in the would-be style of the color

Wall Street Journal portraits. As with gray-scale images,

the RGB halftones are made optimally close to the origi-

nal color components in the sense of preserving the domi- References
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