
Abstract

The fluid flow in thermal ink-jet transducers is highly dy-
namic in the sense that at no time during its operation does
the flow reach a steady-state condition. The transient flow is
affected by the inertial and viscous effects. These two ef-
fects are reflected through the inertance and resistance pa-
rameters of the transducer geometry. In this study we present
a general background on the inertance and resistance param-
eters, present a method for calculating these parameters for
a given three-dimensional geometry, and briefly outline their
role in the ink drop ejection process.

Introduction

Thermal ink-jet (TIJ) is a drop-on-demand printing process.
The printing element consists of a transducer and an ink-
feeding system. The transducer is physically a miniature
complex assembly that produces the ink drops in response
to an electrical signal. The transducer has multiple channels,
through which the ink flows, and each channel has a resistor
that superheats the ink in contact with it when the electrical
pulse is applied. The ink in contact with the resistor pro-
duces a vapor bubble that grows and pushes the ink out from
the channel. After a short interval the vapor bubble collapses
and an ink drop is ejected. Under the surface tension effect
the channel is refilled and is ready to receive the next elec-
trical pulse. The process is repeated for the next ink drop.

As a result of this periodic pulsing of the drop ejection
process, the fluid flow through the channel is constantly
changing as long as the printing process continues. Thus the
flow through the ink passages is always transient. If the flow
is stationary, the flow rate through a given passage, for a
given pressure gradient, is governed by the viscous resis-
tance of the passage. However, if the flow is transient, the
flow rate is governed by not only the resistance, but also the
inertance. The inertance results from the inertia of the fluid.

The fluid mechanics textbooks provide abundant infor-
mation about the fluid resistance, but very little is discussed
about the inertance. Furthermore, the fact that the resistance
and inertance are functions of frequency is not elaborated.
In this study we discuss these aspects and show how one can
calculate these values for a given geometry. As an applica-
tion we consider a channel geometry used in a TIJ printhead
and show the significance of inertance and resistance in ana-
lyzing the flow characteristics of the printhead.

Oscillating Flow through a Circular Pipe

To bring out the essential features of the transient flow, let
us consider a simple problem of flow through a circular pipe
subjected to a time-dependent pressure gradient. Assuming
that the only nonzero velocity component is the axial veloc-
ity u = u(r,t), the Navier–Stokes equation becomes
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where dp/dx is the pressure gradient, r is the density, and µ
is the viscosity. If the pressure gradient varies sinusoidally
with time, then we can assume

dp
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= −G exp(iωt).                             (2)

It can be shown1 that the solution for the velocity u is
given by
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where J
0
 is the Bessel function of the first kind, ν is the kine-

matic viscosity, a is the radius of the pipe, and ω is the fre-
quency. The expression for flow rate q through the pipe can
be obtained by integrating the velocity over the cross-sec-
tional area of the pipe. The flow rate q is of the form

q = qa exp(iωt), (4)

where q
a
 is the amplitude of the flow-rate. This is a complex

number suggesting that the pressure and flow-rate fluctua-
tions are out of phase with each other. The ratio of pressure
gradient to flow rate is called the impedance, Z, which is
also a complex number. We can express Z in the form

Z = Rω + iωLω , (5)

where Rω is the resistance and Lω is the inertance. The sub-
script ω on the resistance and inertance indicates that they
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both are functions of frequency ω. Rezanka2 has derived the
full expression for Z.

Lumped Parameter Model for
Ink Flo w Analysis

To study the refill process in a TIJ printhead, Torpey3 de-
rived an approximate lumped parameter equation in the form

      
L

dq
dt

R q pl l+ = ∆ , (6)

where Ll and Rl are the lumped element inertance and re-
sistance, respectively, and ∆p is the pressure difference
across some length l. The lumped inertance and resistance
for a circular pipe of radius a and length l are
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In view of the fact that the inertance and resistance are
functions of frequency, the question arises as to how these
lumped values relate to those defined in Eq. 5. Rezanka plot-
ted the values of R/Rl and L/Ll  as functions of frequency and
made some interesting observations. He found out that the
resistance equals the lumped element resistance at zero fre-
quency, the resistance diverges as the square root of the fre-
quency, the inertance equals the lumped element inertance at
infinite frequency, and the limit of inertance at low frequen-
cies is only 4/3 of its lumped element inertance. In math-
ematical terms the relation between lumped element values
and exact values is given as

      
L Ll =

→∞
lim ,
ω ω (9)

      
R Rl =

→∞
lim .
ω ω  (10)

We have used the case of a circular pipe to understand
the relationship between the lumped element values and the
exact values for the resistance and inertance. The relation-
ship defined by Eqs. 9 and 10 is true in general. In our further
discussion we consider only the lumped element values of
the inertance and resistance, and for convenience we omit
the subscript l on R and L. The question now is how can we
determine the R and L values for any three-dimensional ge-
ometry. The answer is relatively simple. We calculate the flow
rate q(t) as the response of the system to a step function in ∆p
and calculate the inertance and resistance from the following
equations:

    

L = ∆p
dq

dt




 t=0

,
(11)

    
R = ∆p

q(∞)
. (12)

The reason Eqs. 11 and 12 represent Eqs. 9 and 10, re-
spectively, is that the step function excites all the frequen-
cies; the system response at t = 0 corresponds to the ω → ∞
and the steady state corresponds to ω → 0. We will now con-
sider a specific example to illustrate the case.

Figure 1 shows a channel geometry one might use for a
TIJ printhead. The channel has a triangular cross section, and
the heater is located in a recessed well as shown. The rear
channel consists of a plug and a passageway around the plug
for ink supply from the reservoir. This three-dimensional struc-
ture can be represented in a lumped element model as shown
in Fig. 2. In Fig. 2, p

a
 is the ambient pressure, p

b
 the bubble

pressure, p
r
 the reservoir pressure, L

f
 and R

f
 are the inertance

and resistance of the front channel, and L
r 
and R

r
 are the cor-

responding values for the rear channel. The mid-position on
the heater is used to divide the channel into front and rear
sections.

The pressure in the bubble formed at the heater surface
is very high at the instant of bubble formation, and it falls
very rapidly as the bubble begins to expand.4,5 The pressure
becomes less than atmospheric within a few microseconds
and remains at that level until the bubble collapses. For the
lumped element model we can approximate the bubble pres-
sure p

b
 as follows:
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where p
max

 and p
min

 are the maximum and minimum pressure
values, and t

p
 is the time at which the pressure reaches p

min
.

The impulse, i.e., the positive area under the pressure–time
curve, rather than the exact value of p

max
, governs the flow

behavior. For our example we have assumed p
max 

= 30 atm,
p

min 
= –0.6 atm, and t

p 
= 1.4 µs with an approximate impulse

of 21 atm-microseconds. For the pressure history assumed,
the flow rate in the front channel section can be expressed as
a solution of Eq. 6 as follows:

Figure 1. A channel geometry for a TIJ printhead.

Figure 2. Lumped element model of the printhead.
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where q
f
 is the flow rate in the front channel of the trans-

ducer, R
f
 is the lumped element resistance of the front chan-

nel, and t
f
 = L

f 
/R

f
 is the characteristic time for the front chan-

nel. A similar expression can be obtained for the flow rate in the
rear channel q

r
 by replacing appropriate variables in Eq. 14.

Comparison of the Lumped Element Model
with Full 3D Model

We have used the CFD three-dimensional code FLOW-3D6

to solve the flow in the three-dimensional geometry shown in
Fig. 1 for the pressure history given in Eq. 13. The front and
rear channel flow rates obtained for this case are shown in
Fig. 3. The volume of fluid displaced in the front and rear chan-
nels and the bubble volume are shown in Fig. 4. Note that the
bubble collapses at about 41 µs after it is generated and the
volume of the drop ejected is equal to 102 pL.

The same three-dimensional code is used to calculate the
response of the front and rear channels to a stepped pressure
input, and the resistances and inertances of the channels are
calculated from Eqs. 11 and 12. For the particular set of di-
mensions used, these numbers come out to be R

f
 = 0.73747 ×

108 g/(s, cm4), L
f
 =1354.0 g/cm4, R

r
 = 0.8440 × 108 g/(s, cm4),

and L
r
 = 1619.0 g/cm4. These values are substituted in Eq. 14

to obtain the lumped parameter solution. Figure 5 shows the
comparison of flow rate in the front channel between the
lumped element model and the full three-dimensional model.
The agreement is very good until the time the fluid meniscus
begins to retract into the front channel. This occurs at about
25 µs and then the drop breakoff occurs at about 30 µs. The
retraction of the meniscus into the channel modifies the
inertance and resistance values, and the two solutions deviate
after that point.

By integrating the flow rate we can calculate the volume
displacement as a function of time. The results are shown in
Fig. 6 for the lumped and three-dimensional cases. The peak
values are 128 pL and 108 pL for the two cases, respectively.
The drop volume from three-dimensional calculations is 102
pL. Thus if we use the peak value as an approximate measure
of the drop volume, the error in using the lumped model re-

Figure 3. Flow rates in the front and rear channels of the trans-
ducer obtained from a full 3D calculation.

Figure 4. Volume of fluid displacement in the front and rear chan-
nel of the transducer and the bubble volume as a function of time
calculated using a 3D model.

Figure 5. Comparison of flow rate in the front channel obtained
from lumped element and 3D models.
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sults is less than 20%. The three-dimensional model calcula-
tions require a few hours of CPU on a Sparc workstation,
whereas the lump element model calculations take only a few
milliseconds. Thus one can get a very good and fast estimate
of the performance of a given structure of a TIJ transducer
using the lumped element model. One may estimate the
inertance and resistance values for the given structure by cal-
culating an equivalent radius and using Eqs. 7 and 8.

Figure 7. Flow rate in the rear channel obtained from the lumped
element and 3D models.

Figure 6. Comparison of front channel fluid volume displace-
ment in the lumped element and 3D models.
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In a similar manner we can calculate the flow in the rear
channel. Figure 7 shows the comparison of flow rates in the
rear channel obtained from the lumped element model and
the three-dimensional model. It again shows very good agree-
ment until the bubble collapse time. At the bubble collapse
time there is a very high pressure impulse for a very short
duration. The flow is abruptly brought to rest and some ring-
ing occurs, as seen in the figure. The volume displacement

Figure 8. Fluid volume displacement in the front channel for three
values of inertance.

Figure 9. Fluid volume displacement in the front channel for
three values of resistance.
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can be calculated in this case also and additional information
can be obtained about the flow, but it is not discussed here.

Effect of Inertance and Resistance Change

We can use the lumped element model of the channel geom-
etry to understand the effect of changing the geometry. When
the geometry changes, both the inertance and resistance will
change, but for illustrative purposes we can change these
numbers independently and study their effects. We will con-
sider only the front channel geometry and calculate the drop
volume estimate. Figure 8 shows the effect of changing the
inertance. It shows that increasing the inertance decreases
the drop volume. The initial slope of the volume curve is an
indication of the drop velocity. The results show that the drop
velocity will also decrease with increasing inertance.

Figure 9 shows the effect of changing the resistance of
the front channel. In this case also, an increase in the resis-
tance decreases the drop volume, but the drop velocity seems
to be unchanged. The peaks in these curves occur at different
times and the retraction of the meniscus is also probably sig-
nificantly different for these cases, and one can make addi-
tional inferences on the behavior of the channel geometry.

Summary

A brief outline of the origin of the inertance and resistance
for a fluidic system is given and the dependence of these prop-
erties on the frequency of excitation is brought out. The con-
nection between frequency-dependent values and the lumped
element representation values is pointed out and a method to
calculate these values for any three-dimensional geometry is

outlined. As an example, a geometry used for a TIJ trans-
ducer is considered, and the inertance and resistance of that
geometry is calculated. A lumped element model of the trans-
ducer is used to obtain the flow through the transducer during
the drop ejection process, and it is shown that the results are
in close agreement with those obtained with a full three-di-
mensional CFD code. The lumped element model is used to
investigate the effects of resistance and inertance change on
the performance of the transducer, and it is shown that both
the inertance and the resistance of the front section of the
channel govern the drop volume and drop velocity from the
transducer.
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