Agglomeration Phenomena in AgX Precipitation in the Presence of Gelatin

M. G. Antoniades and J. S. Wey
Manufacturing Research and Engineering Organization, Eastman Kodak Company, Rochester, New York

Abstract

Despite the continuous development of new synthetic polymers, gelatin remains as the principal component of the binder used in most silver halide photographic films and papers. The main reason for the longevity of gelatin in silver halide photographic systems is its remarkable property to play a unique role in almost every step of the manufacture as well as in the photographic processing of these products. The most important function of gelatin in the preparation of photographic emulsions is to provide colloid protection and stabilization for the AgX crystals. Colloid stability of fine AgX particles is provided through steric stabilization, facilitated by the adsorption of gelatin on the AgX surface. A critical level of gelatin is required for such stabilization. The experimentally estimated critical gelatin surface coverage required to prevent coalescence during precipitation is in good agreement with previous theoretical calculations and with equilibrium adsorption measurements. Inadequate peptization of AgX colloid particles during precipitation can cause aggregation which can lead to undesirable agglomeration and coalescence. On the other hand, in some cases gelatin can attenuate flocculation and control coalescence resulting in desirable dislocations such as the formation of twinning dislocations, which is the key step in the nucleation and growth of tabular AgX crystals. This is demonstrated by a strong correlation between the degree of flocculation during nucleation and the resulting tabular grain population fraction.

Introduction

The formation of silver halide microcrystals in the presence of gelatin is affected by a host of variables. Although the fundamental mechanisms of formation are not completely understood, it is known that in double-jet precipitation a stable number of nuclei is formed initially and, under controlled conditions, remains constant throughout the precipitation. Leubner, Jagannathan and Wey developed a dynamic mass balance model for determining the number of stable nuclei formed during the nucleation step of double-jet precipitation of AgBr crystals in the presence of gelatin. This model is in good agreement with experimental results except at some conditions that showed a decrease in the number of nuclei produced with increasing reactant addition rate. This anomaly was attributed to coalescence. Therefore, the understanding of agglomeration phenomena in silver halide precipitation is very pertinent. The importance of agglomeration in the nucleation and growth of silver halide crystals has been also stressed by other researchers.

In this discussion the terms “agglomeration” and “aggregation” are used generically, whereas the terms “flocculation”, and “coalescence” are used to designate specific events. Flocculation refers to loosely held aggregates of noncontacting colloidal particles. In this case, the attraction forces are almost counterbalanced by the repulsion forces, thus preventing particle contact. Coalescence, on the other hand refers to the event by which two or more crystalline particles combine to form a new, larger crystalline particle.

In most silver-based photographic applications, silver halide crystals are peptized by gelatin, which through surface adsorption provides steric stabilization. However, under certain precipitation conditions inadequate levels of gelatin may be available for peptization, and some agglomeration can occur. In this presentation we shall review the conditions that cause such phenomena to take place and discuss their consequences.

Determination of Critical Gelatin Level

A well-mixed continuous crystallizer operating at steady state and with a short residence time is a suitable process for studying the factors affecting the agglomeration of fine silver halide particles under controlled conditions. In this case, the particle size in the reactor effluent can be measured and the presence of agglomeration determined at different steady state conditions.

Experimental: The continuous reactor used was a cylindrical cavity with a center-mounted turbine. The reactants (gelatin, NaBr, and AgNO₃) were added through three inlet ports, and the mixed suspension was removed through an exit port. The volume of the reactor was 33.7 mL. Residence time distribution analysis indicated that the reactor contents were well-mixed.

The reactor was operated with an average residence time of 1.7 sec. The flow rates of the reactants were 16.7 mL/sec for the gelatin solution and 1.67 mL/sec for the NaBr and AgNO₃ solutions. The concentration of the gelatin reactant solution determined the average gelatin concen-
tration in the reactor at steady state, and the AgNO3 reactant concentration determined the steady state AgBr suspension density in the reactor. The gelatin used was a deionized, lime-processed, ossein gelatin with an isoelectric point of 4.9. The pBr of the effluent was measured potentiometrically, using a Ag/AgBr electrode, and the desired pBr was obtained by the concentration of the NaBr reagent. The temperature of the reactor effluent was controlled by adjusting the temperature of the reactants.

The effective size of the particles and aggregates formed in the reactor was determined by an in-line turbidity measurement of the reactor effluent as described in ref. 6. The average size of the individual particles was obtained by turbidimetry and dynamic light scattering (DLS) measurements after withdrawing samples from the reactor effluent and quenching them using 4-hydroxy-6-methyl-1,3,3a,7-tetraazaindene (TAI) as is described in ref. 6. The difference between the sizes obtained by turbidity and DLS was in most cases smaller than 15% with the DLS measurements yielding the larger size as expected.6 The sizes reported here are the averages of these two measurements.

Results and Discussion: The in-line turbidity measurements indicated that the particles were flocculated in most cases. Flocculation was inferred by the difference between the effective particle size obtained by the in-line measurements and after quenching with TAI. The degree of flocculation as indicated by this difference increased as the gelatin level decreased. Hence, the deflocculation with TAI was necessary in order to obtain the size of individual particles.

The primary variables affecting the size of the deflocculated crystals were the average gelatin concentration, c_g, and the AgBr suspension density, c_v, in the continuous reactor at steady state. In addition, good correlation was obtained between the particle size and the ratio of these two parameters, hereinafter denoted by R_g, and referred to as shown in Fig. 1. The range of gelatin concentrations in these experiments was 2 to 10 g/L and the AgBr suspension densities varied from 0.02 to 0.4 mol/L. The effects of pBr, temperature and pH were found to be secondary compared to the effect of the gelatin-to-AgBr ratio.

As seen from Fig. 1 the particle size is independent of the gelatin-to-AgBr ratio above a value of about 50 g/mol but increases sharply with decreasing gelatin concentration below this value. These results reveal the importance of the amount of gelatin available for adsorption on the AgBr particles and suggests a linear relationship between the gelatin-to-AgBr ratio and the inverse size for ratios below 50 g/mol. This relationship is elucidated with the derivation of an expression for the amount of gelatin adsorbed per unit surface area of the AgBr particles, M, through the division of the mass of adsorbed gelatin per reactor volume, Φc_g, by the AgBr surface area per reactor volume, c_v(W/ρ)(6/D), where Φ is the mass fraction of gelatin adsorbed, c_g and c_v are defined above, W is the molecular weight of AgBr, ρ is the crystal density and 6/D is the surface-to-volume ratio. The final expression for M becomes

$$M = \frac{\Phi R_g \rho D}{6W}$$

where R_g(=c_g/c_v) is the gelatin-to-AgBr ratio. Rearranging this equation gives

$$\frac{1}{D} = \frac{\rho}{M \Phi} \frac{6W}{R_g}$$

which indicates that, if M/Φ is constant, a plot of 1/D versus R_g should yield a straight line passing through the origin.

A plot of 1/D versus R_g for the data of Fig. 1, where D is the average of the mean diameters measured by turbidity and DLS, is shown in Fig. 2. This figure demonstrates that the relationship between R_g and this inverse diameter is indeed linear below an R_g value of 50 g/mol, and that a value of the gelatin coverage, M, may be calculated from

![Figure 1. Average particle diameter as a function of gelatin-to-AgBr ratio.](image)

![Figure 2. Plot of 1/D versus R_g. The solid line is a linear regression.](image)

the slope of the regression line of Fig. 2 (obtained for R_g values below 40 g/mol, and by setting the intercept to zero) is 5.1 mg/m², with a correlation coefficient of 0.97. Because
\(\Phi \leq 1\), this value can be considered as an upper limit for the value of \(M\). This result is in good agreement with the previously measured saturation coverage (5-8 mg/m²), considering that lower values than the saturation coverage may be adequate for stabilization, and the theoretical calculation of the minimum thickness of adsorbed gelatin necessary to constrain aggregation of fine silver halide grains.\(^8\)

It is concluded that the irreversible aggregation indicated by these experiments is caused by coalescence. This conclusion is supported by electron microscopy and X-ray diffraction. Coalescence occurs because at low gelatin-to-AgBr ratios the amount of gelatin available is not sufficient to stabilize the small nuclei formed in the reactor. However, as the particle size increases through coalescence, the total surface area decreases until the available gelatin is adequate for stabilization. It is assumed that all these events occur within the average residence time of the reactor. The linear relationship between \(R_p\) and the inverse size can thus be viewed as a correlation between the total available gelatin and the total surface area of the stable suspension.

Coalescence in Double-Jet Nucleation

Although the continuous crystallizer is well suited for the determination of the critical gelatin level for stabilizing AgX microcrystals, the double-jet precipitation is a more commonly used process. As discussed in the Introduction section a model for the determination of the number of stable crystals formed in double-jet nucleation has been developed. The effect of agglomeration on this process is further discussed below.

Experimental: The precipitation experiments were conducted by the balanced double-jet addition of AgNO\(_3\) and NaBr to a gelatin-containing solution agitated by a center-mounted radial-flow mixer. The two reactant solutions were added to the well-mixed gelatin solution through separate subsurface introduction close to the mixer. This addition allowed the reactant streams to be diluted immediately by the circulating bulk suspension containing the gelatin.

In each experiment 100 mL of AgNO\(_3\) and 100 mL of NaBr solutions were added at the same constant flow rate, by the procedure described above, to a gelatin solution that was at a specified gelatin concentration, temperature, \(pBr\), and \(pH\). By changing the constant flow rate of the reactants, their molar addition rate per unit suspension volume, \(R\), could be varied while the total mass of AgBr precipitated remained the same. The NaBr solutions were at a concentration needed to maintain the \(pBr\), which was measured potentiometrically, at the initial value. The temperature was also maintained constant. The size of the AgBr crystals produced during the precipitation experiments was obtained by turbidimetry, and the number of crystals per unit suspension volume, \(Z\), was calculated from the size using a mass balance, as described in ref. 9.

In a typical experiment, the turbidity was measured in-line during the precipitation at a specified gelatin concentration, \(pBr\), \(pH\), and \(R\), by circulating a portion of the reaction vessel contents, at high flow rate through a turbidimeter, providing a transient crystal size and crystal number.\(^9\) At the end of the precipitation, a small sample was withdrawn from the reactor vessel and quenched with TAI, which readily deflocculated the crystals (if they were flocculated) and greatly restrained Ostwald ripening. The turbidity of the quenched sample was then measured and the particle size and number were calculated. The difference between the in-line measurements and the measurements after quenching with TAI was an indicator of the presence and the degree of flocculation.

Results and Discussion: According to the model of ref. 2, the stable number of crystals, \(Z\), formed during double-jet nucleation at high gelatin concentration, constant temperature and controlled \(pBr\) increases with increasing reactant addition rate, \(R\), and the slope of \(\log Z\) versus \(\log R\) is less than unity. In addition, this model predicts that \(Z\) increases with decreasing AgBr solubility (e.g., decreasing temperature). These predictions were verified in this study at several \(pBr\) and temperature conditions. The initial volume and the concentration of the reactants did not significantly affect the results of these experiments. These observations indicate that mixing was not a limiting factor at the conditions used in these experiments.

Typical plots of \(\log Z\) versus \(\log R\) are shown in Fig 3 at three temperatures, \(pBr\) of 2.3 (at 40°C), \(pBr\) 2.2 (at 55°C), \(pBr\) 2.0 (at 70°C) and \(pH\) 4.5. In these experiments the gelatin concentration was high (up to 4 wt%) in order to avoid agglomeration of any kind. The absence of agglomeration was confirmed by the fact that no difference between the in-line measurement and that after quenching with TAI was observed. The results of Fig. 3 are in good agreement with the model that was previously developed by Leubner, Jagannathan and Wey.\(^2\)

In the case of the continuous reactor the gelatin-to-AgBr ratio was defined as an average value for the whole reactor at steady state. In the case of double-jet precipitation this ratio can only be meaningfully defined for the reaction zone
around the silver reactant introduction point. This definition is

\[R_g = \frac{C_g Q_s}{F_i Q_i} \quad [3] \]

where \(C_g \) is the total gelatin mass concentration in the suspension, \(F_i \) and \(Q_i \) are the molar concentration and volumetric flow rate of the silver nitrate reagent, and \(Q_s \) is the total suspension flow rate provided by the mixer at the silver reactant introduction point. As seen from the relationship of Eq. [3], by decreasing \(C_g \) and \(Q_s \) and increasing \(R = \frac{F_i Q_s}{V_i} \) (where \(V_i \) is the total suspension volume) a value for \(R_g \) can be sought during double-jet nucleation, when the amount of gelatin is no longer adequate for stabilizing the nuclei and agglomeration occurs. The results from such experiments after quenching with TAI will be discussed first, in order to examine the irreversible type of agglomeration.

Figure 4 shows the results of log Z as a function log R for \(C_g = 2 \) g/L, \(Q_s = 152 \) mL/sec at 40°C, pBr 2.3 and pH 4.5. This plot shows that at low R values Z increases with increasing R, as expected. However, at high values of R the trend reverses and Z decreases with increasing R, indicating the presence of agglomeration. Similar results were obtained at other \(C_g \) and \(Q_s \) values. Generally, the breakpoint in the log Z versus log R plot occurred at lower values of R as \(C_g \) and \(Q_s \) were decreased, as expected from the relationship of Eq. [3] with a unique critical \(R_g \).

![Figure 4. Plot of Z versus R at low gelatin concentration.](image)

The irreversible agglomeration inferred by these experiments is concluded to be coalescence because no other mechanism can explain the fast growth rates required to reach the sizes obtained at such short times. This mechanism is supported by electron microscopy and x-ray diffraction which indicated the large particles to be crystalline and not aggregates.

Calculation of \(R_g \) at the breakpoint of Fig. 4, using the relationship of Eq. [3] yields a value of approximately 50 g/mol. Similar critical \(R_g \) values were calculated at different \(C_g \) and \(Q_s \) values and the appropriate breakpoints in R obtained from the corresponding experiments. It is remarkable that the critical \(R_g \) estimated from these double-jet experiments is identical to that obtained from the experiments with the continuous crystallizer (Figs. 1 and 2) at the same temperature. This indicates that similar levels of gelatin are required to stabilize fine crystals of comparable size formed by these two processes.

In addition to \(C_g \), \(Q_s \), and R the temperature also affected \(R_g \). Increasing the temperature above 40°C, caused the breakpoints in the log Z versus log R curves to be shifted to larger R, reflecting smaller critical values of \(R_g \). An increase in the crystal size and a corresponding decrease in the AgBr surface area per mass at the higher temperature can account for the observed decrease in the critical \(R_g \) (see Eq. [1]). On the other hand, the decrease in the critical \(R_g \) at the higher temperature may be partly attributed to a thicker more diffuse protection layer that inhibits coalescence.

As in the case of coalescence, \(R_g \) was the most significant factor affecting flocculation. This reversible agglomeration was monitored by the difference between the sizes calculated from the turbidity measurements obtained in-line and after quenching with TAI. A plot of this difference denoted by \(\Delta D_f \) as a function of \(R_g \) is shown in Fig. 5. These data points were obtained with different \(C_g \), \(Q_s \), and R conditions at pBr 2.3, pH 4.5, and 40°C. As seen by this plot, flocculation is evidenced below an \(R_g \) value of 150 g/mol, suggesting that flocculation may be one of the steps in the coalescence mechanism, because flocculation was always present whenever coalescence was indicated by the break in the log Z versus log R plots.

Increasing the temperature reduced the propensity for flocculation, and decreasing the pBr increased the propensity for flocculation. These effects may be explained if flocculation is a result of bridging. At higher temperatures the crystal size increases and the number ratio of gelatin molecules to AgBr particles increases, thus, restraining the bridging. On the other hand, at lower pBr the increase in excess bromide ions or silver bromide complexes may reduce the number ratio of gelatin molecules to AgBr particles through an increase in the gelatin molecular weight, perhaps by ionic crosslinking, thus, enhancing the bridging. This mechanism also explains the absence of flocculation at high
gelatin concentrations and in gelatin-free aqueous AgBr suspensions.

Because the availability of gelatin is found to be so critical at the silver reactant introduction point, it is suggested that the gelatin-crystal association that ultimately determines the stability of the crystals occurs within a very short time domain. This gelatin-crystal association at low gelatin concentrations, is probably the result of the rapidly forming crystals being forced initially to share the limited available gelatin at the reactant introduction point and is manifested as flocculation, whereas coalescence between the bridged crystals is probably attained in the bulk suspension at a slower rate. Therefore, flocculation should be a good predictor of coalescence, as is further discussed below.

Coalescence and Tabular Grain Formation

Although the initiation of twin planes in AgBr nuclei is the key to the formation of tabular crystals, the mechanism of this event has not yet been clearly demonstrated. Several mechanisms have been proposed (see ref. 11 for brief review) but none have been verified. Mumaw and Haugh have recently proposed a coalescence mechanism for the formation of twinning in silver halide crystals. The techniques for detecting flocculation and coalescence discussed above made it possible to investigate the relationship between coalescence and the formation of twinned silver bromide crystals that are suitable for growth into tabular crystals.

Experimental: The approach of this work was to form AgBr nuclei at double-jet precipitation conditions with a varying propensity for coalescence, and then to grow these nuclei and examine the morphology of the resulting crystals. The propensity for coalescence was monitored by the extent of flocculation during double-jet nucleation. Flocculation was used as measure of the coalescence propensity because of the results presented in the previous section.

The extent of flocculation during double-jet nucleation was measured by the difference between the average floc diameter, \(D_f\), and the average individual crystal diameter, \(D_i\), generated during nucleation (\(\Delta D = D_f - D_i\)). These measurements were made by adding to a 4.8 L agitated solution of gelatin at specified gelatin concentration, agitation rate, pBr, pH, and temperature, 100 mL of 3 M silver nitrate solution and 100 mL of sodium bromide solution at a concentration needed to maintain the initial pBr. The two reactant solutions were added as discussed previously. \(D_f\) was obtained from an in-line turbidity measurement and \(D_i\) was obtained from the turbidity after quenching with TAI, as described in ref. 11. The experiments were repeated at various nucleation conditions known to affect flocculation and coalescence.

The twinning propensity at each nucleation condition was also examined by repeating each condition with a quarter of the reactants, to reduce the number of nuclei and produce larger, more easily examined crystals during the ensuing growth. After nucleation, the gelatin concentration and pBr of each suspension were changed to the common values of 10 g/L and 1.5, respectively, in order to provide identical postnucleation ripening and growth conditions in all experiments. The resulting crystals were then grown at pBr 2 and 70°C as described in ref. 11, and the tabular grain population for each condition was determined using electron microscopy. The tabular grain population was then used as an indicator of twinning propensity.

Results and Discussion: Since the primary variable affecting flocculation and coalescence is \(R_g\) and a variable known to affect twinning is pBr, the three main variables examined in these experiments were the gelatin concentration, the reactant flow rate and the pBr. Table I shows the results obtained at a nucleation temperature of 40°C. The rating of the tabular grain population was done as follows. The tabular population was rated low if the fraction of the tabular grain projected area and fraction of the tabular grain number were both below 50%, medium if the projected area was above 50% but the number below 50%, and high if both were above 50%.

<p>| Table I. Correlation between (\Delta D_f) and the Tabular Grain Population at 40°C |
|---------------------------------|----------------|----------------|----------------|----------------|</p>
<table>
<thead>
<tr>
<th>Gelatin concentration (g/L)</th>
<th>Reactant flow rate (mL/min)</th>
<th>(R_g) (g/mol)</th>
<th>(\Delta D_f) (nm)</th>
<th>Tabular grain population</th>
</tr>
</thead>
<tbody>
<tr>
<td>pBr 4.6</td>
<td>10</td>
<td>150</td>
<td>202</td>
<td>---*</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>150</td>
<td>40</td>
<td>65.9</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>20</td>
<td>303</td>
<td>---*</td>
</tr>
<tr>
<td>pBr 2.3</td>
<td>10</td>
<td>150</td>
<td>202</td>
<td>---*</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>150</td>
<td>40</td>
<td>>100</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>20</td>
<td>303</td>
<td>5.4</td>
</tr>
<tr>
<td>pBr 1.5</td>
<td>10</td>
<td>150</td>
<td>202</td>
<td>---*</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>150</td>
<td>40</td>
<td>>100</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>20</td>
<td>303</td>
<td>>100</td>
</tr>
</tbody>
</table>

* No statistically significant difference between \(D_f\) and \(D_i\).
effect of pBr on twinning. Nevertheless, at low gelatin and constant \(R_g \) conditions, the nucleation pBr does correlate with the final tabular grain population, as seen in Table I. This effect of pBr on flocculation and twinning may be a result of an indirect effect of pBr on the peptizing property of gelatin as discussed earlier.

As observed earlier, coalescence of fine AgBr crystals is always preceded by flocculation. More specifically, flocculation is probably the manifestation of a gelatin-crystal interaction resulting from the compulsory sharing of a limited amount of available gelatin by the rapidly forming nuclei. Subsequently, coalescence between the bridged crystals is probably facilitated and attenuated by the initial flocculation. This mechanism may be represented by the following steps:

\[
\text{individual crystals} \leftrightarrow \text{flocs} \rightarrow \text{coalesced crystals}
\]

If the above mechanism is true, then coalescence indirectly correlates with the final tabular population, and should play an important role in the twinning process.

This result raises the question of how coalescence can cause twinning. Twinning is the result of a stacking fault in the [111] plane of the AgBr rock salt structure of the face centered cubic (fcc) lattice. In order to demonstrate how coalescence can produce such a stacking fault, let us consider a AgBr nucleation favoring coalescence. Although the nuclei appear spherical in electron micrographs, on the atomic scale they must be bounded predominantly by flat [111] and [100] faces, as these are the most stable AgBr faces. When coalescence involving [100] faces occurs, no low-energy stacking faults are expected. However, if coalescence occurs on the [111] faces, stacking faults may be obtained as follows.

Let us represent the terminating [111] layers of one of the coalescing nuclei, below the plane of coalescence, by

\[A' b \backslash c A B A b C \ldots \]

where the upper case designates layers of bromide ions, the lower case designates layers of silver ions, the prime indicates the surface layer, and the letter designations refer to the rock salt fcc stacking sequence. Then, let us consider the layers above the [111] plane of contact of a second particle which is coalescing with the first. In order to preserve charge, the surface layer of the second particle must consist of silver ions. Several stacking sequences are possible outcomes. Of these, the three lower-energy sequences are:

\[\ldots a B c A b C a B c A b C \ldots \]
\[\ldots b A c B a C b A c A' b \ldots \]
\[\ldots a C b A c B a C b' A' b \ldots \]

Sequence (1) is the normal rock salt fcc sequence, sequence (2) reveals a twin at \(c' \), and sequence (3) shows a twin at \(A' \). Therefore, of the three low energy possibilities resulting from the coalescence of [111] planes, two have twins an one yields the normal rock salt fcc sequence. This demonstrates how coalescence can produce twinning.

The correlation between \(\Delta D_T \) and the final tabular population established in this work, along with the above discussion, suggests that the measurement of \(\Delta D_T \) during nucleation provides an excellent metric for monitoring, controlling, and generally optimizing the population of tabular crystals in tabular photographic emulsions. Although the determination of \(\Delta D_T \) as described in the Experimental section does not comprise of entirely in-line particle size measurements, modifications may be easily made to achieve real-time determination of \(\Delta D_T \).

References