Experimental Result on Human Visual Sensitivity for Digital Halftone Images

Shigeru Kitakubo, Yasushi Hoshino; Dept of System, Nippon Institute of Technology, 4-1 Gakuendai, Miyashiro, Saitama 345-8501, Japan.

Abstract

In this paper we add some new experimental results to our recent work and discuss them with respect to human visual sensitivity for spatial frequency. In our experiment, several dot pattern images and sinusoidal gratings are used to probe the capabilities of the visual system.

We can see some characteristics of human perceptual system when we analyze our experimental results from the viewpoint of halftone dot size, shape and frequency.

Introduction

Algorithms of converting a continuous-tone image into a binary high quality image are important in non-impact printing field. A great number of digital halftoning algorithms have been presented.

In this paper we add some new experimental results to our recent work and discuss them with respect to human visual sensitivity for spatial frequency. In our experiment, several dot pattern images and sinusoidal gratings are used to probe the capabilities of the visual system.

We can see some characteristics of human perceptual system when we analyze our experimental results from the viewpoint of halftone dot size, shape and frequency.

In 1998 and 1999 we discussed the relationship between the minimum dot size and the print quality. Through these results we recognized the importance of halftone screening method, which is one of the most widely-used binarization methods in printing and publishing industry.

In 2000 and 2001 we discussed the stability of the shape of minimum dots and the merits of clustered dots.

We presented many experimental results and their analyses with respect to the relationship between the size and the stability of clusters in 2002 and 2003.

In 2004 we focused on human visual sensitivity for graininess and presented a paper at ICISH’04.

In 2005 we compared several halftone images and discussed whether we perceived an image as a set of small dots or we paid attention to some specific objects in the image.

Spatial Frequency Sensitivity

Research in both neurophysiology and visual psychophysics has led to the view that the early visual system consists of spatial frequency channels. Retinal images of objects are decomposed into spatial frequency components represented as channel activities. Object recognition is based on the further processing of this representation by later stages in the visual system. Even though the channel architecture of the early visual system is an important organizational principle in spatial vision, it is concerned only with the early stages of visual processing. Many important details have not been specified.

The spatial resolution of the visual system is usually assessed using a simple measure of static visual acuity. A typical visual acuity test consists of a number of high contrast, black-on-white targets of progressively smaller size. Recent research has demonstrated that visual spatial processing is organized as a series of parallel, but independent, channels in the nervous system. As a result of this parallel organization of the visual nervous system, visual acuity measurements no longer appear to adequately describe the spatial visual abilities of a given individual. Contrast sensitivity testing complements and extends the assessment of visual function provided by simple acuity tests.

Contrast sensitivity tests use sine-wave gratings as targets. Sine-wave gratings possess useful mathematical properties and researchers have discovered that early stages of visual processing are optimally tuned to such targets. This leads to determine the spatial frequency sensitivity. Fig. 2 shows an example schema for a frequency sensitivity experiment schema and some sample images.
When we investigate object recognition mechanisms of human beings, it is important to study the sensitivity to contours in images. Tests use sine-wave gratings as targets. We know a characteristic of sensitivity to contours of a stepwise gradation image, which is related to both the step width, the number of pixels having the same brightness value, and the distance between the human eyes and the image. Fig. 2 shows an example of theoretical sensitivity curves at the distance of 0.5 m, 1.0 m, 2.0 m, and 5.0 m.

Clustered-dot ordered dither method can be characterized by the following four aspects: screen angle, screen frequency, dot pattern, level assignment. When an original continuous-tone image is binarized, it is divided into cells and is compared generally to another cell that is called a halftone cell. If each cell is consist of vertical and horizontal pixels, the screen angle is 0°. A halftone cell is a kind of threshold matrix and each threshold value will be compared with repeatedly to generate an output binarized image.

There is a trade-off between the reproductivity of gray-levels and that of spatial resolution. It is said in general that the optimal size of halftone cell is around 4 x 4. However, when we need to reproduce 256 gray-levels by each output cell, we should use a halftone cell of 16 x 16 or higher. In Fig. 4, two binarized images of the sine-wave grating in Fig. 2(b). A 4 x 4 halftone cell was applied to the image on the left, while a 16 x 16 halftone cell was applied to the other image on the right.

First we prepare 4 patterns of sample images CC(75,70), SS(75,70), CS(75,70), and SC(75,70). CC(75,70), for example, is an image which consists of circular shaped clustered dots having 75% grayscale value (black=100%), and the pixels within the circular area in the center have 70% grayscale value. We show the specification of these sample images in Table 1.

Table 1: Specification of sample images

<table>
<thead>
<tr>
<th>Shape of each cluster</th>
<th>CC (75,70)</th>
<th>SS (75,70)</th>
<th>CS (75,70)</th>
<th>SC (75,70)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shape of the area in the center</td>
<td>Circle</td>
<td>Square</td>
<td>Circle</td>
<td>Square</td>
</tr>
<tr>
<td>Dot FREQUENCY (cycle/mm)</td>
<td>0.4625</td>
<td>0.4625</td>
<td>0.4625</td>
<td>0.4625</td>
</tr>
<tr>
<td>Image SIZE (cm)</td>
<td>16 x 16</td>
<td>16 x 16</td>
<td>16 x 16</td>
<td>16 x 16</td>
</tr>
<tr>
<td>Grayscale value of background</td>
<td>75%</td>
<td>75%</td>
<td>75%</td>
<td>75%</td>
</tr>
<tr>
<td>Grayscale value of the center area</td>
<td>70%</td>
<td>70%</td>
<td>70%</td>
<td>70%</td>
</tr>
</tbody>
</table>
Second we change the brightness value of each figure and get
CC(70,65), SS(70,65), CS(70,65), SC(70,65). We show
CC(80,63) and CS(80,63) in Fig. 5, and SC(80,63), SS(80,63) in
Fig. 6 as sample images.

Next we print the sample digital images on high quality
papers by using an inkjet printer with maximum resolution 600
dpi which are widely used for personal usage. After that we start
the test for human recognition of a figure in gray background. Ten
students in Nippon Institute of Technology with normal or
corrected-to-normal vision, naïve to the purpose of the experiment,
served as observers in the experiment. An observer looks at each
printed image and tells whether he/she can recognize a figure in it
or not, and evaluate the clarity according as the following criteria;
0 : Nothing but dots can be seen,
1 : Something but not sure,
2 : Something with different tone,
3 : A circle, or a square, in the center,
4 : Clearly a circle, or a square, can be seen in the center.
Repeat these processes at a distance of 0.5 m, 1 m, 2 m, and 5 m,
respectively.

Results
The results of experiments are shown in Table 2. Many
observers said that they could not see any contours when they saw
from the distance of 0.5 m, and that they were surprised when
they saw a big circle in the dot pattern from the distance of 1.0 m.

Table 2: Observation results (average)

<table>
<thead>
<tr>
<th>Distance</th>
<th>CC(75,70)</th>
<th>SS(75,70)</th>
<th>CS(75,70)</th>
<th>SC(75,70)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 m</td>
<td>1.0</td>
<td>1.5</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1.0 m</td>
<td>3.8</td>
<td>3.8</td>
<td>3.8</td>
<td>3.0</td>
</tr>
<tr>
<td>2.0 m</td>
<td>4.0</td>
<td>4.0</td>
<td>3.8</td>
<td>4.0</td>
</tr>
<tr>
<td>5.0 m</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>3.8</td>
</tr>
</tbody>
</table>

Table 3: Spatial Frequency : Experimental Condition

<table>
<thead>
<tr>
<th>Distance</th>
<th>0.5 m</th>
<th>1m</th>
<th>2m</th>
<th>5m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dot Frequency (cycle/degree)</td>
<td>4.03</td>
<td>8.07</td>
<td>16.15</td>
<td>40.36</td>
</tr>
</tbody>
</table>
Discussion

From the result the recognition rate is highest in the cases of the distance 2.0 m and 5.0 m. Here, let us consider human visual sensitivity for contrast. Fig. 1 shows a characteristic of human visual system; the relation between the spatial frequency and contrast sensitivity or MFT (Modulation Transfer Function). There is a peak around 5 cycles per degree. When we define the standard viewing distance as 50 cm, then the 1 degree at 50 cm translates to 500 * tan(1 degree)=8.7 mm. Thus the spatial frequency of maximum contrast sensitivity is around 5 cycles/8.7 mm = 0.57 cycles/mm at the viewing distance of 50 cm.

We then translate each viewing condition of our experiment to the number of cycles per degree and get Table 1. Each sample image has 74 x 74 (circular or rectangular) clusters of dots and is printed in the size of 16 cm x 16 cm, thus we get 74 cycles per 160 mm, that is 0.4625 cycles/mm. If we look at this image from the distance of 50 cm or 1.0 m, this spatial frequency lies in the range of very high contrast sensitivity (higher than 0.9) as shown in Table 3.

On the other hand, when we look at this image from 2.0 m or 5.0 m, the spatial frequency is equivalent to 16.15 cycle/deg or 40.36 cycle/deg, respectively, at which contrast sensitivity is very low (lower than 0.5).

As for the difference of brightness value between the figure's and backgrounds, recognition rate gets higher as the difference gets bigger, which is predictable. We can say, however, there is a certain value of difference at that the recognition rate changes radically.

As future works, the following items will be remained:
1) consider the influence of the angle of vision and light level using the contrast response function,
2) consider the eyesight of observers.
3) Define the function that explains the relation between (resolution, tone difference) and the object recognition rate.

Conclusion

We made some grayscale images with two different shapes of clusters, circular and rectangular, of pixels and did some tests using them in order to find the critical point where our attention is attracted more to the image as a whole than to the dots. Although we can not see any difference between the two shapes with respect to contour recognition rate, we can explain the results by considering the spatial frequency sensitivity of human visual system.

References

Author Biography

Kitakubo Shigeru is Assistant Professor of Nippon Institute of Technology. He received his B.S., M.s. and Dr. degrees in Science from Tokyo Institute of Technology in 1986, 1988, and 1992, respectively. In 1993 he got a position at Nippon Institute of Technology. He participated in ICISH’04. He is now interested in digital processing theory.