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Abstract 
In this paper, we propose the automatic image fusion 

technique to obtain significant information from each 

spectral image component and to combine three the 

components in an RGB image. The proposed fusion 

method is intended for use with a new electronic 

endoscope which is significantly more efficient in 

diagnosing various types of diseases than 

conventional electronic endoscopes using RGB 

information. The purpose of the proposed method is to 

provide improved reproductions of endoscope images, 

especially blood vessel structures, that agree with 

human vision and provide clinicians with more 

information. The conducted experiment confirms 

method's feasibility and shows that the proposed 

method is superior to the method using Optimum 

Index Factor.  

 

Introduction 
Recently, a new electronic endoscope was developed 

to record and reproduce arbitrary spectral images of 

the mucous membrane such as the gullet, colon and 

stomach. The developed endoscope is significantly 

more efficient in diagnosing various kinds of diseases 

than conventional electronic endoscopes using RGB 

color information. The introduction of spectral 

endoscope requires management of endoscope images 

by using the image database that provides doctors 

with relevant information preventing possible surgical 

intervention. The direct participation of doctors in the 

analysis of spectral endoscope images is not desirable 

because it is difficult for a human to integrate 

information even from the one spectral image with 

several dozens of components. For example, if we use 

an n  component image where =n 61 and need to 

implement RGB fusion =k 3 then there are 

=− )!)(!/(! knkn 35990 possible combinations. 

Therefore, automatic image fusion is required.[4] 

 
Spectral image fusion techniques are grouped into two 

classes:  statistical (numerical) methods and color 

related methods [8]. Numerical methods include 

principal component analysis, multiresolution 

approaches based on wavelets, methods based on 

arithmetical operations between spectral components 

and methods using component correlation and filters 

[8]. The color related approaches include component 

selection for RGB (IHS) color system, integration of 

spectral data in RGB (or IHS) color space and 

substitution of one or three color components with an 

image from another source [8]. The fusion takes place 

on three levels: pixel, feature and decision [6, 8]. In 

this paper, we consider a novel method, which uses 

spectral component selection algorithm and is related 

to RGB color fusion.  

 

In the overview of definitions of data fusion only one 

definition addresses quality: “fusion refers to the 

combination of a group of sensors with the objective 

of reproducing a single signal of greater quality and 

reliability” [11]. There are many quality measures for 

image fusion including statistics (Fisher distance, 

information entropy and mutual information) [2, 3, 9] 
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and objective measures [7, 13]. Apart from the mutual 

information measure, statistic measures compute 

either a separation measure between the target and its 

background or the image complexity. The most widely 

used mutual information and objective measures 

estimate what information is transferred from the 

input images to the fused image. These measures are 

not suitable in our case as we select spectral 

components to implement RGB fusion. In our study 

we show that an image quality measure based on 

observer perceptions and oriented for medicine should 

be used in the component selection task. We cannot 

also use the conventional image quality measures like 

SSIM [12] because they require a reference image and 

are not intended for color images. Therefore we shell 

directly estimate quality of the fused images. We also 

present two main objectives of endoscope image 

fusion in order to increase spatial resolution and to 

enhance certain features not visible in either of the 

single spectral components alone.  

 

In this paper, we describe automatic image fusion to 

obtain significant information from each of the image 

components (band) and to combine three of them in 

an RGB color image. The task of image fusion is to 

provide enhanced sharpness and color of an image 

structure (blood vessel structures and areas degraded 

by diseases) that agree with human vision and provide 

the clinicians with more details.  

 

Image Fusion Based on Image Quality 
The purpose of this study is to develop a component 

selection and fusion automatically based on relevant 

observer quality preferences and related to observer 

perceptions and physical image parameters. Our task 

is to select a combination of three components from a 

set of spectral components (a 61 component image) 

and use them in RGB fusion. In this study we use an 

estimation of image quality directly due to the lack of 

a relevant reference image. An original color image 

cannot be used as a reference because the quality of a 

synthetic image can be both better and worse in 

comparison to an original image. However, an 

approach with a reference image is found to be useful 

to correct a final result and to reduce the noise level. 

In this study we will follow the guidelines presented 

in the image quality circle introduced in [1]. The 

image quality circle includes the following: observer 

quality preference, observer perceptions, physical 

image parameters, image quality model, visual 

algorithm, system model and technology variables.  

 

Observer image quality preference. Observer image 

quality preference is based on an overall image quality 

rating by the observer and based on a numerical scale, 

for example 1 to 10.  

 
Observer perceptions. Observer perceptions include 

the most important image attributes. In photography, 

for example, they are graininess, sharpness, lightness 

reproduction-ness and hue-chroma reproduction-ness 

[1]. The quality of the endoscope images considered 

here relates to medical diagnostics made by doctors. 

Therefore, it is important to formulate a set of 

perceptions a priori if any relevant information is 

available. We recognize that this is a very initial, 

restricted and not fully defined set. However, using 

the first experiments where doctors provided 

component selections [4], we conclude that the most 

important perception factor in endoscope image fusion 

is sharpness. This coincides with the conventional 

viewpoint that the most important factor for fusion is 

how well the fusion technique emphasizes the local 

structure of an image that is an edge image [7]. 

However, while the role of sharpness of endoscope 

images corresponds to common knowledge, the role 

of color is less clear in the doctors' selection. In many 

fused images manually made by doctors, color is 

presented very scarcely. We assume that the doctors 

simply omitted the most interesting component 

combinations due to a huge amount of combinations 

needed for testing. In this study, we will show how by 

using a color selection technique we can discover 

image structures which cannot be reproduced with any 

other parameters or with conventional techniques such 

as pixel and region fusion. Thus, we consider 

colorfulness to be the second important factor in 

endoscope image fusion. This study explicitly 

involves computation of the physical parameters 

defining the sharpness and colorfulness and 

incorporates noiseless at the postprocessing stage. 
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Physical parameters. Physical parameters are the 

quantitative functions and parameters used to define 

image quality [1]. In our study, we specified two most 

important perception factors: sharpness and 

colorfulness. Therefore, we define two physical 

parameters, Fourier spectra and chromaticities, which 

relate to human perception factors such as hue and 

saturation. 

 
Technology variables. Technology variables are the 

system parameters that the developer of the imaging 

system uses to change image quality [1]. In the 

imaging system considered here, that is a spectral 

electronic endoscope, such basic variables are the 

spectral estimating matrix converting the original 

RGB image into a spectral image and the matrix 

selecting three components for simulating a synthetic 

RGB image. The first stage we call component 

synthesis and the second stage we call component 

selection.  

 

Visual algorithm. The algorithm is used to compute a 

value of perceptions (in our case sharpness and 

colorfulness) from a physical image parameter [1]. We 

consider sharpness that relates to the spatial frequency 

and colorfulness related to the chromaticity scope. Let 

us assume that we selected three components with 

different indices from a 61 component set 

representing the synthetic spectral image and ordered 

them according to the correspondent wavelength so 

that the component R , G and B are taken at the 

long, medium and short wavelength, respectively. In 

the preprocessing stage we scale the component pixel 

values as follows: 

           )/()( minmaxmin RRRRR −−← ,    (1) 

where ←  means a substitution. Similar scaling is 

used for G and B  components. We adopt the system 

presented by intensity BGRI ++= and 

chromaticities )/( BGRRr ++= and 

)/( BGRGg ++=  incorporating hue and 

saturation information and robust to illumination 

change.  

 
First, we consider sharpness. We propose to define 

sharpness by the relative frequency of two-

dimensional Fourier spectrum of the intensity 

component I . The relative frequency rF is 

computed as follows:  

          2/122 ))()(( vFuFF rrr +=   ,          (2)  

where )(uFr and )(vFr are taken along horizontal and 

vertical coordinates of a two-dimensional Fourier 

spectrum. If an image size is NM × then the relative 

frequency for horizontal coordinate taken at 0=v  is 

as follows: 

    

 
. 

 
  (3) 

Geometrically, the relative frequency is equal to the 

width of the rectangle with a unit height and an area 

equal to the area under the enveloping frequency 

curve, that is the Area Under Curve (AUC), of the 

Fourier spectrum scaled by 1
max|)(| −uF . The larger 

value of the relative frequency is the better image 

sharpness. This is an efficient measure that gives a set 

of advantages. This approach is computationally 

simple and does not require estimating the highest 

frequency of an image because the AUC incorporates 

information about the spectrum width. In addition, 

this measure works in the horizontal and vertical 

dimensions of the spectra and, thus, roughly 

approximates the anisotropic MTF of the human eye 

described in [5]. The drawback of this measure is that 

it is sensitive to noise because noise expands the 

spectrum. Usually the noisy components are presented 

in a short wavelength subrange. To reduce noise 

influence we have to replace these components by 

selecting them from the subset of components with the 

less noise level.       

 
We determine colorfulness using the chromaticity 

images r and g . First, we compute a two-

dimensional chromaticity histogram ),( grhist . 

Next, we define colorfulness by relative chromaticity 

scope. Chromaticity scope is an area S occupied by 

the chromaticity histogram of the  RGB  image in a 

chromaticity diagram. The histogram values are taken 

when they exceed a threshold equal to two pixels. The 

relative chromaticity scope rC is the chromaticity 

scope divided by the whole area of a chromaticity 

diagram. The larger the value of the relative 

chromaticity scope is, the better the colorfulness. If a 

∑
−

=

−=
1

0

1
max |)(||)(|)(

M

u
r uFuFuF
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number of bins along each coordinate of the 

chromaticity diagram is N , then the relative 

chromaticity scope is as follows: 

              ))1/((2 NNSC r += .   (4) 

Thus, the relative frequency measure and the relative 

chromaticity scope measure are used to evaluate 

image sharpness and colorfulness. We compute two 

performance indices (sharpness and colorfulness, 

respectively) as follows: 

       )/()( minmaxmin rrrrs FFFFPI −−= , 

       )/()( minmaxmin rrrrc CCCCPI −−= . 

  (5) 

  (6) 

The values of these performance indices are within the 

range [0, 1] and are convenient for combination of the 

performance indices to obtain the measure for overall 

image quality. Algorithm 1 shows the visual 

algorithm. 

Algorithm 1. The visual algorithm.  

Input: selected image TBGR |,,|=x . 

Do: 

1. Scale the input image using Eq. 1 and 

compute the intensity I  and chromaticity 

images r and g . 

2. Compute the relative frequency rF using 

Eq. 2 and Eq. 3. 

3. Compute the chromaticity histogram 

),( grhist  and the relative chromaticity 

scope rC  using Eq. 4. 

4. Compute the performance indices sPI and 

cPI using Eq. 5 and Eq. 6, respectively. 

 
Image quality model. Image quality models relate to 

customer perceptions and describe mathematically the 

trade-off the observer makes estimating image quality 

[1]. The image quality model described here and 

called the performance index PI  is defined by a 

product of two terms sPI  and cPI  as follows: 

 

                     cs PIPIPI = .   (7) 

We find a maximum PI  by selecting three 

components of a spectral image. We consider that 

there is no a reason to make this model complicated 

by introducing other measures (contrast, lightness) at 

the expense of sharpness and colorfulness, which are 

the most important factors in image fusion. We also 

note that the applications based on Minkowski metrics 

and related metrics are successfully used in image 

quality model building [1]. However, in this case 

researchers face a problem in estimating the data 

dependant metric parameters. As a result, it is difficult 

to achieve a good generalization for a large set of 

endoscope images.  

 

Fig. 1 shows the generic RGB color fusion scheme 

and the flow chart of the proposed method for 

component selection. We sequentially select three 

components from the given spectral image. The 

selected components are transformed into the intensity 

and chromaticity images. We use Fourier spectrum 

and a chromaticity histogram to compute the 

performance indices. Finally, only one component 

combination having a maximum performance index is 

used for RGB color fusion.  

 

 

Figure 1. The generic RGB color fusion scheme and the flow 

chart of the proposed component selection method. 

 

System models. System models are analytical models 

that predict the physical image parameters based on 

the technology variables [1]. Here we consider only 

the basic technological variables of a spectral 

endoscope. In the first stage, that is component 

synthesis, we convert the endoscope RGB image 

z into the 61 component spectral image Azy = , 

where A  is an estimating matrix with a size 61× 3 

[4]. The rows of A  are technology variables. In the 
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second stage, we use a selection matrix W to select 

three components used for RGB fusion Wyx = . 

The matrix W has a size 3× 61. The three rows of 

W  are technology variables. Each row of  W  
consists of all zeros except one having a unit value. 

While the matrix A  is defined at the spectral 

estimation stage, the matrix W design considered in 

our study directly relates to component selection. The 

maximum performance index and the direct search 

procedure determine the choice of unit elements in the 

rows of W.  
 
Noise Reduction 
The noise problem is important for the proposed 

method since the components from the short 

wavelength range are frequently noisy. One of the 

measures used in our method and based on the relative 

frequency rely on the frequency spectrum width 

which can be increased due to noise influence. The 

basic idea for reducing the noise level is to reselect 

components intended for fusion taking them from the 

range with long wavelengths. Reducing noise we have 

to provide sharpness and colorfulness in the fused 

images. Therefore, we select the 200 component 

combinations which have the highest PI . Then, we 

measure the SSIM between an intensity image with a 

maximum PI and the intensity images of the 

selected combinations. The SSIM is an efficient 

approach for comparison the noisy image with a 

noiseless image [12]. Then, we select only 15 

combinations from the 200 combinations. The 

selected combinations have the minimum SSIM 

values. In addition, the short wavelength component 

of each combination has the wavelength longer than 

the wavelength of the short wavelength component of 

an optimal (maximum PI ) combination. Then, we 

select only one combination with a maximum cPI  

from the 15 combinations. The last steps guarantee 

that the corrected image is still sharp and colorful. 

Finally, the image with the reduced noise level and the 

image without noise reduction are presented to the 

observer who has to select the best one.  

 
Experiment 
The five spectral endoscope images L003, L051, 

L040, L049 and L032 were analyzed using the 

proposed algorithm. The image size (horizontal and 

vertical) is 321×241 pixels and the spectral dimension 

is 61 components uniformly acquired at 5 nm in the 

range 400-700 nm. Except for the image L051, we are 

interested in improved reproduction of the blood 

vessel structure. For the image L051, we try to 

enhance the reproduction of an area degraded by 

diseases.   

 

For comparative purposes, we use a statistic metric, 

that is the Optimum Index Factor OIF [8], which is 

maximized  

 

  

,    

 
 (8) 

where iσ is the standard deviation of pixel values for 

component, jcc  is the correlation coefficient 

between each two of three components. Pixel values 

were normalized in the same way as for other metrics. 

To make comparison more interesting, the OIF is 

used only for components in the range 400–565 nm, 

where spectral components have better sharpness [10]. 

In this case, all possible combinations of components 

in the subrange are analyzed.  

 
Table 1 shows the results for component selection 

using different metrics. First, we note that the 

maximum performance index related to sharpness is 

typically achieved by selecting components in the 

short wavelength subrange that confirms the results 

obtained in [10]. The maximum performance index 

related to colorfulness maximizes when components 

are selected from the whole wavelength range and 

stand out in a spectral domain. For the maximum 

performance index incorporating sharpness and 

colorfulness, the selected components belong roughly 

to the short wavelength subrange from 450 to 600 nm. 

These components stand out in a spectral domain in 

comparison to the sharpness metric. The OIF  
metric attempts to find components with long 

wavelengths which have a maximum variance. We 

build a Hinton diagram to see how the performance 

indices affect the entries of W. Fig. 2 shows the 

results obtained for the endoscope image L003.  
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Finally, we conducted the experiment with subjective 

quality evaluation of the color and fused versions of 

endoscope images. 11 observers (9 males and 2 

females) participated in the experiment. All observers 

had normal color vision and were inexperienced in 

making medical quality judgments. The test images 

were reproduced on an 17'' LCD display. The light 

source had an illuminance of approximately 367 lux 

and the illumination values =x 0.3707 

and =y 0.3845. The viewing distance was 50 cm and 

a non limited time was given for observation. The 

observers were asked to give their opinion about 

reproduction of the blood vessel structure using 

evaluation values from 1 to 10, where a higher 

number on the scale indicated better sharpness and 

better reproduction of vessels.  

 

Fig. 3 shows image quality (mean values) for the test 

images made by observers. Fig. 4 shows the 

conventional color (endoscope) images and Fig. 5 

shows the color images obtained by the proposed 

fusion method and corresponding to the conventional 

images. Fig. 3 shows that the proposed method 

outperforms conventional endoscope and the OIF  
based method. The proposed method improves image 

sharpness for all images. However, the color change 

caused by fusion produces the most interesting results 

shown in Fig. 5. Obviously, the fusion method utilizes 

the discriminative character of color: a vessel 

structure is separated better from the background and 

the thin and thick vessel structures acquire different 

colors. This makes it possible to observe vessel 

substructures as well. This effect is clearly observed in 

the images L003 and L032 which the observers 

ranked high. We see the bluish thick vessels in L003 

and we see the reddish thin vessels and bluish thick 

vessels in L032. We note that the improvement of 

L051 with an area degraded by diseases (right-bottom 

corner) is not so dramatic, although image sharpness 

and contrast are better than in the conventional image.  

 

Table 1. Selected components using different metrics. The 
values are wavelength, nm. The components for the images 
L040 and L032 are given after noise correction. 

Metric L003 L051 L040 L049 L032 
sPI  525  

530 
535 

435 
445 
455 

460  
465 
470 

510 
515 
520 

470 
475 
480 

cPI  470 
535 
660 

470 
540 
650 

455 
530 
650 

460 
525 
670 

450 
530 
650 

PI  450 
525 
550 

520 
540 
580 

465 
525 
600 

480 
525 
585 

475 
525 
560 

OIF  555 
560 
565 

470 
560 
565 

450 
560 
565 

460  
560 
565 

470 
560 
565 

 
 

                                              (a) 

 

 
                                              (b) 

 

 

                                              (c) 

Figure 2. The Hinton diagrams of selection matrices. a)  

Wfor sPI , b) Wfor cPI  and c) W for PI . The 

zero-valued elements are shown by small squares. The unit 

elements are shown by black squares. A horizontal position of 

elements corresponds to wavelength from 400 to 700 nm taken 

at 5 nm. The first, second and third row in each diagram define 

the selected R , G  and B components, respectively. 

 

Figure 3. Image quality for the test images. For each test image 
the left, medium and right bars are given for a color image, an 
image fused by the proposed method and a fused image using 
the OIF, respectively. The error bars show the standard 
deviation values of observer estimates. 
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Conclusions 
We proposed a novel method for image fusion in 

electronic endoscopes. We used the most important 

perception factors in medicine: sharpness and 

colorfulness to enhance the reproduction of blood 

vessel structures. The vessel structure in the fused 

images has better distinguishable colors than the 

conventional color images. Color information helps to 

separate the vessel structure from the background and 

to discover vessel substructures. The optimum 

between discriminative color and sharpness is 

achieved in the relatively short wavelength subrange. 
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Figure 4. The original RGB color images (from top to bottom): 

L003, L051, L040, L049 and L032. 

 

Figure 5. The fused RGB color images using the proposed 

method (from top to bottom): L003, L051, L040, L049 and 

L032. 
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