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Abstract 

To understand the contributions and the requirements of 
image resolution at different eccentricities to perceived 
image quality, we measured subjective image quality for 
degraded multiresolution images. A vision model equation 
was used to estimate contrast threshold as a function of 
retinal eccentricity. Two high-resolution images were 
processed using a vision-performance-based algorithm. 
Eight such degraded images were computed for each 
original scene by scaling the model-determined 
performance. During this experiment, the participants were 
asked to fixate on a target. The images were displayed for 
250 ms in each trial to prevent saccadic eye movements. 
Five observers participated in the experiment and were 
instructed to rate the image quality on a ratio scale. Each 
image presentation was repeated 20 times in a random 
sequence. The average response over the five observers 
showed that the perceptible image degradation level was 
slightly higher than predicted by the model equation. This is 
consistent with our expectations as the visibility of the 
degradation should be masked by the background image. 
This experiment demonstrates that the vision model, which 
is based on visual sensitivity to simple grating patches at 
different eccentricities and spatial frequencies, provides a 
useful tool to predict the perceptible image degradation in 
real complex scenes as a function of retinal eccentricity. 

Introduction 

In situations where the field of view of the video screen 
needs to be large, such as in immersive entertainment, the 
required bandwidth for image communication can become 
exceedingly high. As the end-receiver is a human with a 
bandwidth-limited visual system, there is a potential to 
reduce the required communication bandwidth by filtering 
the image to eliminate information from the image that 
cannot be seen by the human visual system. If this filtering 
is performed prior to a bottleneck in the image 
communications system, this filtering can reduce the 
required bandwidth.  

When motion imaging is concerned, the time interval in 
which an image frame is displayed is so short that saccadic 
eye movements are not possible. In this case, the human 
fovea is not able to scrutinize more than one location of a 
single frame; most parts of the image frame are seen by the 

peripheral retina. As human vision is spatially inhomo-
geneous, with the greatest spatial and chromatic resolution 
at the fovea when viewing images under photopic 
luminance levels, the peripheral retina is less sensitive to 
fine image structure. Therefore, one could monitor the eye 
fixation location and utilize the inhomogeneous property to 
reduce the information content of the portion of the image 
that is displayed in the periphery, i.e. the so-called gaze 
contingent display technique.1-7 

To make this gaze contingent system work 
appropriately, there are several requirements: (1) one must 
understand human visual performance at different 
eccentricities; (2) image processing tools must created that 
can appropriately implement human visual functions; (3) an 
eye tracking device must be able to reliably determine gaze 
position; and (4) fast real-time image processing must be 
available. In this paper, we are only concerned with the first 
two issues. Our primary goal is to evaluate the perceived 
image quality for these non-uniformly degraded images. 

Peripheral Visual Performance 

Psychophysically, one can measure the highest spatial 
frequency that can be resolved at a particular retinal 
location with patched gratings (e.g., Refs 8-9). For a more 
complete characterization, investigators usually measure the 
contrast thresholds for detecting the patched gratings of 
different spatial frequencies at different eccentricity (e.g., 
Refs 10-12). Based on the study of Peli et al.,13 the contrast 
threshold for detecting a patched grating of spatial 
frequency f at an eccentricity r can be described as 

 Ct(r, f) = Ct(0, f) exp( k f r),    (1) 

where Ct(0, f) is the contrast threshold at the fovea, and k is 
a parameter. In their formulation of this equation, Peli et 
al.13 fit this equation to data from six previous experiments 
that had determined the contrast threshold of 
monochromatic gratings. These fits demonstrated that the k 
value ranged from 0.030 to 0.057. Based on Eq. 1, the 
contrast threshold increases rapidly with eccentricity at high 
spatial frequencies. These relationships indicate that the 
high spatial frequency information can be only retrievable 
by the central parts of the retina. 

Equation 1 provides a relative contrast threshold at 
different eccentricities, when the fovea threshold is 
normalized to 1. This equation does not address the actual 
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thresholds as the fovea thresholds Ct(0, f) are not specified. 
Geisler and Perry[5] developed a similar model, with a 
specification at the fovea. The model was written in a 
different format, but it can be expressed by Eq. 1, with the 
fovea contrast threshold expressed as 

Ct(0, f) = exp( a f) / S0,     (2) 

where S0 is a constant with empirically obtained values of 
about 64 to 75, and α is the spatial frequency decay 
constant.  

The fovea contrast threshold described by Eq. 2 
increases monotonically with spatial frequency and it 
provides a nice fit to particular sets of psychophysical data. 
However, this equation is not adequate for a general 
prediction of contrast thresholds at low spatial frequencies. 
It is well known that contrast threshold dips at an 
intermediate spatial frequency of about 1 to 4 cpd, and 
increases at both low and high spatial frequencies.14 Yang et 
al.,15 developed a model to capture such a behavior, with a 
simplified version of the equation expressed as 

Ct(0, f) = [N+ η σ2/(f2 + σ2)] exp( α f),   (3) 

where, N, η, σ, and α are parameters. The calculated 
contrast threshold versus eccentricity at six different spatial 
frequencies according to Eqs. 1 and 3, and a nominal set of 
parameter values is shown in Fig. 1.  
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Figure 1. Contrast threshold versus eccentricity. The visual stimuli 
were grating patches with spatial frequency ranging from 0.5 to 
16 cpd. The thresholds were calculated based on Eq. 3, with a 
nominal set of parameter values.  

 
Before proceeding, it is helpful to point out some 

potential limitations in the model equation of the contrast 
threshold. The threshold equations were based on pure 
target detection on a uniform field. When a real image is 
used, the detection of the image degradation is often 
accomplished against a complex image background. In this 
case, due to the effects of visual masking, the threshold 
contrast could increase. Furthermore, the used model 
parameters were obtained under certain experimental 
conditions. The conditions may not be exactly the same in 

other experiments, and the parameter values might change 
accordingly. For example, one needs to choose the field size 
in the measurements of the visual sensitivity at different 
eccentricities and different spatial frequencies. However, it 
is difficult to determine the appropriate target size for a 
generalization of the results to spatially extended patterns. 
For example, the difference between Eqs. 2 and 3 could be 
explained by the effect of field size used in the experiments. 
Because of the existence of these uncertainties in the model, 
we can only use the model to roughly estimate the contrast 
threshold at different eccentricities. For a more accurate 
description, we will rely on experimental results using 
spatially extended patterns.  

The threshold equations can be used to estimate the 
degradation levels that can be just detected. To provide a 
range of image degradation in the study, we varied the 
contrast threshold Eq. 1 by transforming the eccentricity r 
with a shifting parameter S1 and a scaling parameter S2: 

r = S2 (r - S1).     (4) 

When S1 = 0 and S2 = 1, it returns to the original form, 
however, scaling of these parameters allows the 
aggressiveness of the model to be altered and the perceived 
degradation be evaluated. 

Processing Multiresolution Images 

Whereas one purpose of creating foveated images is to 
transmit the least information from the original image while 
minimizing the perceived image degradation, it is important 
to understand the impact of this type of filtering on 
perceived image quality. After having a model of visual 
performance at different eccentricities, the next question is 
how can one process images to take advantage of the 
inhomogeneity of the human visual system to allow the 
resulting images to be matched to the information 
processing capacity of the human visual system.  
 Many methods have been proposed to achieve this goal. 
Some of the work simply separates the image into two 
resolution zones in space (e.g., Refs 1 and 7). In this 
method, the images displayed in a circular zone centered at 
the fixation position have a high spatial resolution, and the 
images in the surrounds only keep lower spatial frequency 
information. Although the two-zone method is simple and 
straightforward for the processing of foveated images, it 
does not take full advantage of the inhomogeneity of the 
human visual system, the sensitivity of which changes 
smoothly as a function of retinal eccentricity.  
 To optimize the foveated images, the changes in image 
quality with eccentricity should be matched to the smooth 
variation of human visual performance. Along this 
direction, Geri and Zeevi16 used a variable resolution 
scheme to process images. In their approach, the point-
spread function of the human vision was modeled as a 
Gaussian function, with its standard deviation increasing 
with eccentricity. In a different approach, Kortum and 
Geisler2 developed an algorithm to sample the original 
images based on human vision knowledge. Kortum and 
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Geisler2 calculated the required sampling interval based on a 
cortical magnification factor. The code values within a 
sampling block are assigned the mean value of the block, 
i.e., the so-called SuperPixel. 

To maintain a consistency in the description of human 
visual performance provided earlier, we applied the 
threshold Eqs. 1 and 3 to determine the required sampling 
interval. The cut-off spatial frequency fc at an eccentricity r 
can be defined by setting the contrast threshold Ct to 1, 
which gives fc = - {ln[N + η σ2/(fc

2 + σ2)] }/(α + k r), and it 
can be further approximated to 

fc = - ln(N) /( α + k r),      (5) 

when the cut-off frequency fc is much higher than σ, which 
is often the case. Any frequency components that are higher 
than the cut-off frequency are not useful to visual 
perception, and can be discarded. In order to carry the 
frequency components up to the cut-off frequency fc, the 
sampling interval should not be larger than  

∆x = 1/(2fc) = - 0.5 ( α + k r)/ ln(N).   (6)  

Geisler and Perry5 further developed a foveated 
multiresolution pyramid to segregate an image into different 
spatial frequency bands. In the Geisler and Perry approach, 
different levels of the pyramid were circularly truncated 
based on the estimated cut-off spatial frequency of the 
visual system at different eccentricities. The reconstructed 
image from the zone-limited pyramid contains fine structure 
at the center of the fixation, and it gets more blurred 
towards the peripheral retina.  

Experimental Method 

The purpose of the experiment is to evaluate the image 
quality of the processed multiresolution images, and to 
understand whether the vision model, which is based on 
visual sensitivity to simple grating patches at different 
eccentricities and spatial frequencies, is useful to predict the 
perceptible image degradation in real complex scenes as a 
function of retinal eccentricity. We only consider the 
SuperPixel algorithm here. 

Viewing Environment  
The experiments were run on a Power Mac G3 computer 
with a 17" monitor (Mitsubishi Diamond Pro 87TXM). We 
developed the experimental software in Matlab using the 
extensions provided by the high-level Psychophysics 
Toolbox17 and low-level VideoToolbox18 to control video 
sequences on the monitor. The screen resolution was 1280 
by 1024 with a frame refresh rate of 75 Hz. The output 
luminance on the screen was proportional to the input code 
value as delivered by using a linear lookup table. The 
maximal luminance of the screen was 89 cd/m2. The 
viewing field extended 36 by 28.8 deg at a viewing distance 
of 45 cm, which gives 1.7 min of arc per pixel. The display 
was viewed in a darkened room.  

Image Preparation 
The original images, referred to as TAXI and DISNEY 

and are shown in Fig. 2. The images were stored in linear 
RGB code value with 8 bits for each color channel. We 
applied the SuperPixel algorithm to process the images. For 
each image, we produced eight images of different levels of 
degradation manipulated by the parameters S1 and S2.  

 

Figure 2. The original image DISNEY and TAXI 

 
To probe a larger peripheral retina, the fixation target 

was located at the pixel and line position of (100, 100) in 
the upper-left corner of the screen. The extent of the image 
degradation is indicated by two parameters (S1, S2), and was 
chosen to be in a range from less than the threshold level to 
well above threshold as determined by some pilot tests.  

Table 1. The parameters S1 and S2 for the eight 
degraded image using SuperPixel algorithm. 
 I1 I2 I3 I4 I5 I6 I7 I8 
S1 0 0 -3.7 0 -1.5 3 0.98 3.33 
S2 0.5 1 0.92 2 1.94 4.2 4 6.2 

 
There were eight degradation levels for the SuperPixel 

images. The eight sets of parameters (denoted from I1 to I8) 
are shown in Table 1. 
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Figure 3. The relationships between required sampling size and 
eccentricity calculated based on Eqs. 4 and 6 with a nominal set of 
parameter values, and the S1 and S2 values supplied in Table 2. 
The heavy line represents the condition determined by the 
threshold equation, that is, with the scaling parameters of 0 and 1. 
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Based on Eqs. 4 and 6, one can obtain the relationship 
between the sampling interval and the eccentricity for each 
intended image (I1 to I8). As the video display resolution is 
limited by its pixel size, the possible simulated sampling 
intervals are the integer multiples of this pixel width, which 
is 1.7 min of arc in the current experimental setting. Figure 
3 shows the relationship between the maximal eccentricity 
and the required sampling size in number of pixels for the 
processed images. The heavy line represents the condition 
determined by the threshold equation, that is, with the 
scaling parameters of 0 and 1. Examples of the degraded 
image of an arbitrary degradation level are shown in Fig. 4.  

 

+ +

 

Figure 4. An example of the degraded images of an arbitrary 
degradation level using SuperPixel algorithm. The crosses 
indicate the fixation position.  

Psychophysical Procedure 
Each observer took part in two separate runs, each with 

a different scene, in a single session. In each run, there were 
a total of nine images (one original and eight different 
degradation levels). Each image was repeated ten times, 
presented in a blocked pseudo-random sequence. In each 
block, the nine images were presented in a pseudo-random 
order, but there were no repeats of the same images within a 
single block. In each trial, the image was displayed for 250 
ms, where the global image contrast was modulated 
following the first-half period of a 2 Hz sine wave. Between 
trials, the screen was a uniform field with the same 
luminance and color as the mean of the images, with a 
fixation target at screen location (100, 100). The procedure 
is similar to the one used by Peli et al.19 The observers were 
instructed to estimate image quality by using a ratio scaling 
method. Observers were asked to assign a scale of 100 to 
the original image that was displayed on the screen before 
the start of each run. At the start of each trial, the observer 
fixated on the cross and pressed the space key on the 
keyboard, allowing the image to be displayed for 250 ms. 
After image presentation, the observer verbally indicated an 
estimate of the quality magnitude, by comparing the 
perceived image quality of the present trial with the 
previous one. 

Observers 
Results from five observers, including one of the authors, 
with normal or corrected vision of at least 20/20 are 
reported in this paper.  

Experimental Results 

The major task here is to find a degradation level that is just 
perceptible to human observers. The perceptible image 
degradation is reflected in the subjective image quality scale 
in reference to the original non-degraded image, (i. e., 
image I0). Figure 5 shows the subjective image quality scale 
at different image degradation levels. The data points are 
geometric means over 20 repetitions for each observer. It 
seems that individual observers assigned the quality number 
with a consistent bias on an absolute scale, that is, they 
continuously assigned values that were biased towards 
values below 100 even for non-degraded images that were 
included as catch trials. Nevertheless, this difference is not 
critical to the interpretation of the data when the relative 
image quality in reference to the original image, i. e., I0, is 
concerned. In this sense, all the individual results are 
compatible, with a similar tendency in the perceived image 
quality when the degradation level is changed. The dark 
heavy lines in each panel show the geometric means over 
the five observers. They are much smoother than the curves 
obtained for individual observers.  
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Figure 5. Subjective ratio scales versus degradation level (images 
#0 to #8) for the five observers, with (A) the scene DISNEY, and 
(B) the scene TAXI. The data points are geometric means over 20 
repetitions for each observer. The dark heavy lines in each panel 
are the geometric mean over the five observers. 
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By looking at Fig. 5, it seems one can conclude that the 
perceived quality of image #1 is hardly different from the 
original image, for either DISNEY or TAXI. The obvious 
perceptual difference starts with image #2. At this 
degradation level, the image processing was based on the 
actual vision model (see Eq. 2) with the parameters S1 being 
0 and S2 being 1. Further, a two-factor ANOVA test 
(degradation levels and different sessions of all the 
observers) showed that there was no significant difference 
in rating images #0 and #1 (p > 0.1). On the other hand, 
there was a significant difference in rating images #0 and #2 
(p < 0.001).  

Comparisons 
We use the mean curves (i. e., the two dark heavy lines) 

to compare the subjective image quality between the two 
scenes. The curves were re-scaled to reflect the same score 
of 100 for image #0. Figure 6A shows relative subjective 
image quality. From Fig. 6A, one can see that the effective 
image degradation is not sensitive to a particular scene. 
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Figure 6. Comparing subjective image quality among the original 
scenes with a relative ratio scale (upper panel) and with the 
measurements of the just noticeable difference in the unit of d' 
(lower panel). 

Ratio Scales and JNDs 
The ratio scale provides a nice description of the 

monotonic relationship between the physical difference in 
the stimuli and the perceived subjective response for the 
concerned attribute. However, it is difficult to relate the 
exact scale values to underlying sensory or higher level 
processes. These numbers may not tell anything beyond this 
particular experiment. For example, there is no objective 
method to determine the threshold degradation level from 
the curves shown in Fig. 6A. To solve this problem, we 
used a method to convert the ratio scales to JNDs using d 
prime. The results are shown in Fig. 6B, where the differ-
ence of 1 d prime corresponds to 76% correct responses in a 
discrimination task when the experimental paradigm is two-
alternative forced choice (see Macmillan and Creelman20). 
Based on the JND values shown in Fig. 6B, it is more 
informative to say that the threshold level corresponds to 
degradation level 3, at which the JND values are about 1 d 
prime. The corresponding visual resolution at different 
eccentricities is shown by the dashed curve in Fig. 3. 

Conclusion 

The vision model based on visual sensitivity to simple 
grating patches at different eccentricities and spatial 
frequencies provides a useful tool to predict the perceptible 
image degradation in real complex scenes. The 
experimentally obtained threshold degradation level is 
somewhat higher than the vision model would predict. 
However, this is consistent with our expectation since it was 
expected that visual sensitivity is lower when the 
background consists of complex patterns, as in the real 
scenes used in the current experiment.  
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