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Abstract

Non-linear models of reflectance based on exponentiation
of linear combinations of ‘pseudo-dye’ basis functions are
compared to linear models of the same dimension. Tests
with the new Kodak database of 354 reflectances show that
the non-linear model makes a modest gain over its linear
counterpart.

1. Introduction

Low-dimensional linear models of spectral reflectance have
proved very useful (eg.1,2,3,4) because they allow approxi-
mations of the reflectance spectrum to be represented by
only a few parameters. While 6-8 such parameters may
suffice5 for accurate approximations, in many color appli-
cations often only 3 or fewer can actually be used because
color imagery provides only 3 knowns to a      set of equations
in which the linear-model parameters are the unknowns.
This paper investigates the extent to which non-linear
models might improve the accuracy in approximating re-
flectance given only a 3-band measurement.Rodriguez and
Stockham6 describe a non-linear meth-od which extracts
the transmittance spectrum of transparency film based on a
knowledge of the spectral transmittance functions of the 3
underlying film dyes.  Their algorithm calculates the amount
of each dye from the response of a 3-band scanner. Since the
film obeys Beer’s law, the dye amounts and scanner re-
sponses are related non-linearly. Their iterative algorithm
estimates the dye amounts based on the scanner responses,
constructs the transmittance spectrum corresponding to
those dye amounts and then generates a set of predicted
scanner responses which are then compared with the actual
scanner responses in order to adjust the dye estimates.

Their method works well for film; will it also work well
for modelling spectral reflectances? This paper presents
results showing that in fact low-dimensional, non-linear
models of reflectance approximate spectral reflectance some-
what better than linear models of the same dimension. Non-
linear models, however, demand significantly more com-
putation time.

2. Non-linear Models

Non-linear models of reflectance will work well when
reflectances behaves like the absorption of transparency
film. For transparency it is more natural to consider trans-
mittance T (λ ) (the inverse of absorption A (λ )) which
relates the amount of light passing through the object, I (λ)
to the amount I0(λ) incident upon it:

T(λ) ≡ I(λ)I0 (λ)

The optical density of the object is defined as:

D(λ) ≡ – log(T(λ)) ≡ log( A(λ))

When light passes through 2 or more objects in se-
quence the transmittances multiply, while conveniently the
densities add.  Consider light passing through surfaces 1,2,3

with transmittances and densities as shown below.

T1(λ) T2 (λ) T3 (λ)

I0 (λ) → 1 → I1(λ) → 2 → I2 (λ) → 3 → I3 (λ)

D1(λ) D2 (λ) D3 (λ)

T123(λ) = I3(λ) / I0 (λ)
= (I1(λ) / I0 (λ))(I2(λ) / I1 (λ))(I3(λ) / I2 (λ))

=Τ1(λ)Τ2(λ)Τ3(λ)

D123(λ) = -log (T1(λ)T2(λ)T3(λ))
= D1(λ) + D2(λ) + D3(λ)

In the case of 3-layer color negative transparency    film,
the 3 layers, usually cyan, magenta and yellow are superim-
posed so that the light passes through them in sequence just
as for the case of the 3 objects discussed above.  For film, the
density spectra of the dyes used in the layers are fixed and
measurable. The amount of each dye, however, varies
according to how the film is exposed.  When the dye
amounts ωi and dye densities Di (i = 1..3)  are known, the
resulting film density for film obeying Beer’s law becomes
completely specified as:

D(λ) = ω j

j =1

3

∑ Dj (λ)

The 3 parameters ωj specify the density linearly and the
transmittance non-linearly as:

T (λ) = − exp( ω j

j =1

3

∑ Dj (λ))

2.1 Film Transmittance from RGB
Given RGB measurements from a 3-channel film scan-

ner, Rodriguez and Stockham6 seek the film’s transmit-
tance as represented by the ωi dye amounts.  For a scanner
with sensitivities r(λi), g(λi) and b(λi)  known at wave-
lengths λ1...λM and producing measured sensor responses
R, G, B, the ωj are calculated via non-linear least-squares
minimization of:
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min{(R – –exp( ω j

j =1

3

∑
i=1

M

∑ Dj (λ i ))r(λ i ))2

+ (G – –exp( ω j

j =1

3

∑
i=1

M

∑ Dj (λ i ))g(λ i ))2

+ (B – –exp( ω j

j =1

3

∑
i=1

M

∑ Dj (λ i ))b(λ i ))2}

This kind of minimization can be solved by standard
numerical techniques. For example, the S-plus language7

used for all the experiments reported here employs the
Gauss-Newton algorithm in its function called nls. Basi-
cally, the dye amounts are being chosen so as to produce a
transmittance spectrum which, when integrated with the
scanner sensitivity functions to produce a predicted scanner
response, results in the predicted and actual responses being
as similar as possible.

It is helpful to bear in mind an obvious and well-known
consequence of the non-linear dependence of transmittance
upon dye density, which is that film transmittances will not
be modelled exactly by a 3-parameter linear model. Chang-
ing a dye’s concentration changes not only the intensity of
the transmitted light, but its spectrum as well, so the trans-
mittance spectra of the 3 dyes do not form a set of 3 fixed
colors for additive mixing the way a CRT’s primaries do.

3. Non-Linear Reflectance

Is reflectance analogous to film absorption? In particular, is
there a small set of ‘pseudo-dyes’ for reflectances that
might assume the role of the dye layers in color film?  As for
the case of arguments made in favor of linear models,8 the
question is not to be answered in terms of a physical model,
but rather in terms of statistical properties.

The basic presumption behind using a non-linear
model is that darker colors of roughly the same hue result
from increased amounts of pigment.  In the case of paints
mixed by adding dyes to a white base paint a non-linear
model might be expected to work quite well. However, in
the case of printing processes where colors are made darker
by increasing the percentage of area covered with an ink
rather than by the thickness of the ink layer, a linear model
would be more appropriate.

3.1 Pseudo-Dyes
To provide a non-linear model of reflectance, a set of basis

vectors corresponding to the dye density functions must be
found. In the linear-model approach, a basis set is calculated as
the set of vectors obtained using a characteristic vector analy-
sis5 of a representative set of reflectance spectra.  The discretely
sample spectra are treated as vectors and which are used to
form the rows of a matrix which then is decomposed via
singular value decomposition. The  vectors representing
spectra generally are normalized to unit magnitude.

If the reflectance basis vectors are Sj (λ), j =1...N, then
the N-dimensional, linear model approximation to reflec-
tance S(λ)with weighting coefficients σj is given by

S(λ) = [σ j

j =1

N

∑ Sj (λ)]

The non-linear case hypothesizes that densities com-
bine linearly from which it follows by analogy to the linear
case that a linear basis for the density space can be found via
the same characteristic vector analysis, but now applied to
the set of vectors obtained by taking the logarithm of each
spectra in the set of representative reflectance spectra. Since
the scaling involved in normalizing the spectra would
introduce an undesirable translation in logarithm space,
they are not normalized in the non-linear analysis.

3.2 Linear and Non-Linear Reflectance Estimates
For the general case of an n-band sensor with spectral

sensitivity functions Rk(λ),k = 1..n viewing surface reflec-
tance S(λ) under illumination E(λ), the linear model ap-
proximation to the sensor response is:

ρk = σ j

j =1

3

∑ E(∫ λ)Sj (λ)Rk (λ)dλ

In matrix form this becomes

ρ = Qσ

where (Q) jk = ∫ E(λ)Sj (λ)Rk (λ)dλ.  For Q nonsingular, this
can be rewritten for the coefficient vector so long as the
dimension of the linear model matches the number of sensor
bands.

σ = Q-1ρ

Since the reflectance basis functions are orthonormal,
the reflectance spectrum reconstructed from the σ coeffi-
cient vector will provide the best approximation in the least-
squares sense to the original reflectance within the n-
dimensional model.

In addition to reconstructing a spectrum from sensor
values, it is also helpful to know what the best possible
approximating spectrum is for a model of fixed dimension.
In the linear case, the best coefficients of the best approx-
imation are simply the coordinates of the spectrum pro-
jected onto the basis vectors.  In the non-linear case, the
coefficients are found by non-linear least-squares minimi-
zation of

min [S(λ i ) – exp( ω j Dj (λ i ))]
j =1

N

∑
i=1

M

∑












2

In the special case where the sensor sensitivities be-
have like dirac delta functions, the non-linear case be-
comes linear.

Instead of doing a non-linear least squares minimiza-
tion, another alternative would be to do a linear fit of
log(S(λ)) to the pseudo-dye basis vectors, reconstruct the
density spectrum and then exponentiate.  This, however,
would not guarantee the best fitting reconstruction. The fit
to the density basis to log(S(λ))   may be good, but then any
errors are amplified by the exponentiation.

Convergence to the global minimum has not been
proven for the non-linear case, however, Rodriguez et.al.6

reported stable performance for their algorithm and simi-
larly in all the tests reported below the non-linear least
squares algorithm converged in under 10 iterations to the
same answer even when the starting conditions were varied.
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Dimensions Non-Linear LinearPercent Mean Linear Case Non-Linear Linear Percent Max
Mean Error Mean Error Increase Unrealizable Max Error Max Error Error Increase

3 7.621 11.797 54.796 31 29.332 45.886 56.437
4 4.857 6.949 43.072 26 14.015 32.904 134.777
% Variance
Dupont 0.8778247 0.9732508 0.9948155 0.9980541 0.9990478 0.9994800 0.9996748
% Variance
Log Dupont 0.8723005 0.9769323 0.9974153 0.9986852 0.9993321 0.9996388 0.9998145

Dimensions Non-Linear Linear Percent Mean Linear Case Non-Linear Linear Percent Max
Mean Error Mean Error Increase Unrealizable Max Error Max Error Error Increase

3 10.004 10.373 3.689 10 out of 170 40.038 43.882  9.601
4 7.765 6.954 -10.444 10 out of 170 36.948 43.446 17.587
% Variance
Objects 0.9285662 0.9749974 0.9913733 0.9948835 0.9971507 0.9984382  0.9990555
% Variance Log
Log Objects 0.9487006 0.9820347 0.9953819 0.9977805 0.9986035 0.9992028  0.9995413

Dimensions Non-Linear Linear Percent Mean Linear Case Non-Linear Linear Percent Max
Mean Error Mean Error Increase Unrealizable Max Error Max Error Error Increase

3 8.563 10.876 27.012 5 out of 64 27.199 27.095 -0.382
4 5.492 6.851 24.745 2 out of 64 23.420 24.872  6.200
% Variance
Munsell 0.8487322 0.9569718 0.9915236 0.9964170 0.9984046 0.9989884  0.9994437
% Variance
Log Munsell 0.8965447 0.9727840 0.9962366 0.9984542 0.9991402  0.9994633 0.9997248

Table 1. Comparison of average and maximum errors for full-spectrum linear and  non-linear fits to the 120 reflectances in the
‘DuPont paint chip’ subset.  Also shown is the percentage of the variance accounted for by the first 7 characteristic vectors.

Table 2. Comparison of average and maximum errors for full-spectrum linear and  non-linear fits to the 170 reflectances in the
‘objects’ subset. Also shown is the percentage of the variance accounted for by the first 7 characteristic vectors.

Table 3. Comparison of average and maximum errors for full-spectrum linear and  non-linear fits to the 64 relectances in  the
‘Munsell chip’ subset. Also shown is the percentage of the variance accounted for by the first 7 characteristic vectors.

Table 4. Comparison of average and maximum errors for full-spectrum linear and  non-linear fits to the combined set (DuPont, objects,
Munsell) of Kodak 354 reflectances. Also shown is the percentage of the variance accounted for by the first 7  characteristic vectors.

Dimensions Non-Linear Linear Percent Mean Linear Case Non-Linear Linear Percent Max
Mean Error Mean Error  Increase Unrealizable Max Error Max Error Error Increase

3 9.840 11.704 18.943 43 out of 354 41.109 43.720  6.351
4 7.278 8.629 18.563 36 out of 354 34.900 33.257 -4.708
% Variance
Combined 0.8881759 0.9691406 0.9922569 0.9960211 0.9977136 0.9985319  0.9991218
% Variance
Log Combined 0.9075316 0.9780640  0.9959379  0.9978212  0.9986291 0.9992057  0.9994792

Table 5. Percent normalized error between spectra recovered via the linear and non-linear methods given only the spectras’ CIE
XYZ coordinates.

Reflectances Non-Linear Linear Percent Mean Non-linear Linear Percent Max
Mean Error Mean Error Increase Max Error Max Error Error Increase

Dupont 11.682 16.364 40.07 56.952 68.798 20.80
Munsell 11.187 14.154 26.52 31.552 36.953 17.12
Objects 13.655 13.233 -3.08 60.214 74.553 23.81
Combined 13.193 15.496  17.46 53.55 67.453 25.96
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4. Results

The non-linear and linear fitting methods were tested on
the new database of reflectance spectra provided by Imag-
ing Research Laboratories, Eastman Kodak Company.9

This data is broken down into 3 subsets: 64 Munsell chip
spectra, 120 DuPont paint chip spectra, and spectra of 170
assorted objects.  The data is provided in 2nm and 10nm
sampling intervals. For all the calculations describe here,
the 10nm data in the range 400-700nm was used.

Tables 1-3 show the results of fitting the complete
spectra from the different subsets of the Kodak reflectance
database to both linear and non-linear models of 3 and 4
dimensions. Table 4 shows the results for the combined
database of all the Kodak reflectances.  The errors repre-
sent the square root of the sum of squares difference
between the exact spectra Sexact and approximated spectra
Sapprox normalized relative to the magnitude of Sexact  accord-
ing to the formula:

error ≡
Sexact – Sapprox

Sexact

The percentage increase in error in moving from the
non-linear to the linear model is calculated as

(linear error) – (nonlinear error)

(nonlinear error)
× 100

Tables 1-4 also list the percentage of the total vari-
ance accounted for by the first 7 characteristic vectors for
the linear and logarithm cases.

Table 5 lists the errors in the spectra recovered from a
3-band sensor.  The CIE x, y, z  matching functions10 act as
the sensor sensitivities so effectively the spectra are being
recovered from their CIE XYZ coordinates under equal-
energy white light. Since in both the linear and non-linear
cases, the equations are solved for spectra that produce the
specified sensor response, the recovered spectra are neces-
sarily metameric to the actual spectra and so will always
have ∆E values of zero.

Computation for the non-linear case requires roughly 5
seconds per spectrum estimated from RGB versus only 0.01
seconds for the linear case (S-plus on SUN Sparc-10).

In the linear case, nothing forces the best fitting spec-tra
in a least-squares sense to be physically realizable, so they may
well contain negative values at some wavelengths. The tables
list the number of spectra having at least one negative value.
For the non-linear case, however, physical realizability is
guaranteed since exponentiation is always non-negative.

5. Conclusion

Overall the non-linear model performs 17.5% better than
the linear model in approximating surface reflectance. Un-
fortunately, it does not do better on the ‘objects’ subset.  A
significant advantage of the non-linear method is that it is
guaranteed to generate spectral estimates that are positive at
all wavelengths.  Increased computational time is its prime
disadvantage.
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